Open Access
Issue
E3S Web Conf.
Volume 259, 2021
2021 12th International Conference on Environmental Science and Development (ICESD 2021)
Article Number 01003
Number of page(s) 8
Section Environmental Monitoring and Ecosystem Protection
DOI https://doi.org/10.1051/e3sconf/202125901003
Published online 12 May 2021
  1. Technical Overview of Volatile Organic Compounds: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#3 (12 April 2017) [Google Scholar]
  2. Volatile Organic Compounds in Your Home: https://www.health.state.mn.us/communities/enviro nment/air/toxins/voc.htm (15 June 2020) [Google Scholar]
  3. Colborn, T., Kwiatkowski, C., Schultz, K., & Bachran, M. (2011). Natural gas operations from a public health perspective. Human and ecological risk assessment: An International Journal, 17(5), 1039–1056; DOI: 10.1080/10807039.2011.605662 [CrossRef] [Google Scholar]
  4. McKenzie, L. M., Witter, R. Z., Newman, L. S., & Adgate, J. L. (2012). Human health risk assessment of air emissions from development of unconventional natural gas resources. Science of the Total Environment, 424, 79–87. DOI: 10.1016/j.scitotenv.2012.02.018 [Google Scholar]
  5. Eubanks, L. P. (2006). Chemistry in context: Applying chemistry to society. McGraw-Hill Education; pp 45 [Google Scholar]
  6. Goldstein, A. H., & Galbally, I. E. (2007). Known and unexplored organic constituents in the earth’s atmosphere. DOI: 10.1021/es072476p [Google Scholar]
  7. Schnell, R. C., Oltmans, S. J., Neely, R. R., Endres, M. S., Molenar, J. V., & White, A. B. (2009). Rapid photochemical production of ozone at high concentrations in a rural site during winter. Nature Geoscience, 2(2), 120–122. DOI: 10.1038/ngeo415 [CrossRef] [Google Scholar]
  8. EPA, U. (2000) National air pollutant emission trends 1900-1998. US Environmental Protection Agency. [Google Scholar]
  9. Heminway, S. (1995). Profile of the Petroleum Refining Industry. EPA Office of Compliance Sector Notebook Project, US Environmental Protection Agency, Washington. [Google Scholar]
  10. Swarthout, R. F., Russo, R. S., Zhou, Y., Miller, B. M., Mitchell, B., Horsman, E., & Sive, B. C. (2015). Impact of Marcellus Shale natural gas development in southwest Pennsylvania on volatile organic compound emissions and regional air quality. Environmental science & technology, 49(5), 3175–3184. DOI: 10.1021/es504315f [CrossRef] [PubMed] [Google Scholar]
  11. Gilman, J. B., Lerner, B. M., Kuster, W. C., & De Gouw, J. A. (2013). Source signature of volatile organic compounds from oil and natural gas operations in northeastern Colorado. Environmental science & technology, 47(3), 1297–1305. DOI: 10.1021/es304119a [CrossRef] [PubMed] [Google Scholar]
  12. Jobson, B. T., Berkowitz, C. M., Kuster, W. C., Goldan, P. D., Williams, E. J., Fesenfeld, F. C., & Riemer, D. (2004). Hydrocarbon source signatures in Houston, Texas: Influence of the petrochemical industry. Journal of Geophysical Research: Atmospheres, 109(D24). DOI: 10.1029/2004JD004887 [CrossRef] [Google Scholar]
  13. Berkowitz, C. M., Jobson, T., Jiang, G., Spicer, C. W., & Doskey, P. V. (2004). Chemical and meteorological characteristics associated with rapid increases of O3 in Houston, Texas. Journal of Geophysical Research: Atmospheres, 109(D10). DOI: 10.1029/2003JD004141 [CrossRef] [Google Scholar]
  14. Kemball-Cook, S., Bar-Ilan, A., Grant, J., Parker, L., Jung, J., Santamaria, W., & Yarwood, G. (2010). Ozone impacts of natural gas development in the Haynesville Shale. Environmental Science & Technology, 44(24), 9357–9363. DOI: 10.1021/es1021137 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.