Open Access
Issue
E3S Web Conf.
Volume 259, 2021
2021 12th International Conference on Environmental Science and Development (ICESD 2021)
Article Number 02002
Number of page(s) 6
Section Green Technology and Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202125902002
Published online 12 May 2021
  1. Niu Wenyuan. Green design is the first lever to launch green development. Journal of Chinese academy of sciences. 2016, 31(5):491–498. DOI: 10.16418/j.issn.1000-3045.2016.05.001. [Google Scholar]
  2. Papanek, V. Design for the Real World. Chicago: Academy Chicago Publishers, 1985. 203–205. [Google Scholar]
  3. Fox, A., Murrell, R. Green Design: A Guide to the Environmental Impact of Materials. London: Phaidon Press, 1989: 126–129. [Google Scholar]
  4. Fiksel, J. Design for Environment: An integrated systems approach. Arlington: 1ST IEEE international symp on electronics and the environment. 1993: 126–131. [Google Scholar]
  5. Niu Wenyuan. 2016 China Green Design Report [M]. Beijing: Science Press, 2016. [Google Scholar]
  6. Bhamra, T.; Lofthouse, V. Design for Sustainability; Gower Publishing Ltd. Aldershot, UK, 2007. [Google Scholar]
  7. Faludi, J. Golden, Tools in Green Design: What Drives Sustainability, Innovation, and Value in Green Design Methods? University of California: Berkeley, CA, USA, 2017. [Google Scholar]
  8. McMahon, M.; Bhamra, T. Social Sustainability in Design: Moving the Discussions Forward. Design Journal. 2015(18):367–391. DOI: 10.1080/14606925.2015.1059604. [Google Scholar]
  9. Kees Dorst, The core of ‘design thinking’ and its application, Design Studies, 2011, 32(6): 521–532, https://doi.org/10.1016/j.destud.2011.07.006. [Google Scholar]
  10. Guo Xuanchang, JIANG Haiqing. Rethinking green Design through the thought of Unity of man and nature. Ecological Economy. 2016, 32(08):224–227. [Google Scholar]
  11. Liu Hengli,; Liu Baoshun, (2011). [IEEE 2011 International Symposium on Water Resource and Environmental Protection (ISWREP) - Xi’an (2011.5.20-2011.5.22)]. Rethinking of green design and environmental protection, 2280–2281. DOI: 10.1109/iswrep.2011.5893721. [Google Scholar]
  12. Sianne Gordon-Wilson, Pratik Modi, Personality and older consumers’ green behaviour in the UK, Futures, 2015, 71(5):1–10, https://DOI.org/10.1016/j.futures.2015.05.002. [Google Scholar]
  13. Du Juanjuan. On Green Design under Circular Economy. Wuhan: Wuhan Textile University, 2016. [Google Scholar]
  14. Cao Shaozhong, TU Xu-yan, Yang Guo-wei. Green circular Economy and Green Design. Mechanical Design, 2004(04):1–5. DOI: 10.13841/j.cnki.jxsj.2004.04.001. [Google Scholar]
  15. He, Can Qun, and Bo, Ji. The Material Selection in Green Design. Key Engineering Materials, vol. 474476, Trans Tech Publications, Ltd., Apr. 2011, pp. 1551–1556. DOI: 10.4028/www.scientific.net/kem.474-476.1551. [Google Scholar]
  16. Ben Moussa, F.Z.; Essaber, F.E.; Benmoussa, R.; Dubois, S. Enhancing Eco-Design Methods Using TRIZ Tools: The Case of ECOFAIRE. In New Opportunities for Innovation Breakthroughs for Developing Countries and Emerging Economies. TFC 2019, 572. IFIP Advances in Information and Communication Technology; [Google Scholar]
  17. Zhonghang Bai. Lei MuGreen Product Design Based on the BioTRIZ Multi-Contradiction Resolution Method. Sustainability. 2020, 12(10), 4276; https://doi.org/10.3390/su12104276. [Google Scholar]
  18. Ekmekci, I. Koksal, M. Triz Methodology and an Application Example for Product Development. Procedia Soc. Behav. Sci. 2015, 195, 2689–2698. [Google Scholar]
  19. Space Launch Report: SpaceX Falcon Data Sheet, http://www.spacelaunchreport.com/falcon9.html. [Google Scholar]
  20. falcon-9. https://www.spacex.com/vehicles/falcon-9/. [Google Scholar]
  21. The greatest project in human history PPT, Musk’s 39-page Mars Project PPT. https://www.sohu.com/a/441679082_659777. [Google Scholar]
  22. CHEN Wei-hua. The Concept of the Green Mechanical Products Design. Journal of Industrial Design, 2012(1):2–22. [Google Scholar]
  23. LI Cong-bo. Green Manufacturing Operation Mode and its Implementation Method Research. Chongqing: Chongqing University, 2009. [Google Scholar]
  24. Wang Qingfeng;Gao Jinji et al. Theoretical research and application of equipment in-service remanufacturing engineering. Chinese Journal of Mechanical Engineering. 2018, 54(22):1–7. DOI: 10.3901/JME.2018.22.001. [Google Scholar]
  25. Sohu, Tesla’s integrated die-casting machine is coming, reducing from 70 parts to 1? https://www.sohu.com/a/449024568_99957845. [Google Scholar]
  26. Liu Jinchun, Bai Jicheng, Guo Yongfeng, and Yang Xiaodong, “Non-Traditional Machining” (6th Edition). Beijing: Machinery Industry Press, May 2013. [Google Scholar]
  27. Xia Juchen, Hu Hongbin, Zhao Haitao. et al. Development and application on 3D printing manufacturing and remanufacturing technology and equipment for hot forging mold. FORGING & STAMPING TECHNOLOGY. 2020(08), 1–5. DOI: 10.13330/j.issn.1000-3940.2020.08.001. [Google Scholar]
  28. Gong Qingshan. Research on Remanufacturing-Oriented Multi-Objective Optimization Design of Mechanical Equipment. Wuhan: Wuhan University of Science and Technology. 2019. [Google Scholar]
  29. Wang Sijie, Qiao Yulin, Liu Pengfei & Liu Zhaowei. Advanced laser cleaning technology and its application for equipment remanufacturing. Material development and application. 2019(05), 77–82. DOI: 10.19515/j.cnki.1003-1545.2019.05.016. [Google Scholar]
  30. Liu Xiaomin, et al. “Innovative design of self-cleaning glass integrating bionics and extenics.” Chinese Journal of Engineering Machinery. 2019. 17(04):323–328+334. DOI: 10.15999/j.cnki.311926.2019.04.007. [Google Scholar]
  31. Chen Penghui. Research on hydrophilic self-cleaning film on the surface of photovoltaic panels. Nanchang: Nanchang University. 2019. [Google Scholar]
  32. Jiang Nan. Preparation and characterization of high-performance anti-ultraviolet self-cleaning glass coating. Shanghai: East China University of Science and Technology. 2018. [Google Scholar]
  33. Li, Lu, et al. Research Progress in the Application of Ultrasonic Cleaning Technology in the Industrial Field. Applied Chemical Industry. 2020(12):. DOI: 10.16581/j.cnki.issn1671-3206.20201221.017. [Google Scholar]
  34. Zhang Dongjiu, Wu Guoqing. et al. Superamphiphobic surfaces with robust self-cleaning, abrasion resistance and anti-corrosion. Chemical Engineering Journal, 2021, 406. DOI: 10.1016/J.CEJ.2020.126753. [Google Scholar]
  35. Mandal Priya, Perumal Gopinath, et al. Green manufacturing of nanostructured Al-Based sustainable self-cleaning metallic surfaces. Journal of Cleaner Production, 2021, 278. DOI: 10.1016/J.JCLEPRO.2020.123373. [Google Scholar]
  36. Xu Peimin, et al. Design Improvement of Steel Wire Continuous Electroplating Machine. Electroplating and Finishing. 2020(21). 39:1474–1476. DOI: 10.19289/j.1004-227x.2020. [Google Scholar]
  37. Maarten Kappelle. WMO Statement on the State of the Global Climate in 2019. https://www.researchgate.net/publication/340135130_WMO Statement on the State of the Global Climate in 2019. DOI: 10.13140/RG.2.2.13705.19046. [Google Scholar]
  38. Gao Hua. Global Carbon Capture and Storage (CCS) Technology Status and Application Prospects. Coal Economic Research. 2020. 40(05):33–38. DOI: 10.13202/j.cnki.cer.2020.05.005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.