Open Access
Issue
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
Article Number 01009
Number of page(s) 7
Section Energy Development and Energy Storage Technology Research and Development
DOI https://doi.org/10.1051/e3sconf/202126101009
Published online 21 May 2021
  1. Yang Q Y, Song X R. (1989) Design and experimental analysis of rotating heat pipes for electric motors[J]. Energy Engineering, (01):10-12. [Google Scholar]
  2. Morita, Shinichi, Yang, H. D., Wu, Y. M.. (1982) Application of heat pipes to electric motors[J]. Motor Technology, (3):32-35. [Google Scholar]
  3. Jankowski T A. (2007) Numerical and Experimental Investigations of a Rotating Heat Pipe[R]. Los Alamos National Laboratory (LANL), Los Alamos, NM. [Google Scholar]
  4. Shukla K N. (2015) Heat pipe for aerospace applications-an overview[J]. Journal of Electronics Cooling and Thermal Control, 5(1):1-14. [Google Scholar]
  5. Li J W, Dai S G. (2019) Research progress and outlook of high temperature heat pipe technology[J]. China Space Science and Technology, 39(03):30-42. [Google Scholar]
  6. Wei J W, Yang K, Xie Y, et al. (2011) Threedimensional temperature field of a high-rotation differential step generator rotor and application of rotating heat pipe[J]. Journal of Electrical Machines and Control, 15(7): 82-86. [Google Scholar]
  7. Matt A. Streby, Pon R. (1996) Ponnappan John E. Leland J, Jerry E. Beam. Design and testing of a high speed rotating heat pipe. Proceedings of the intersociety energy conversion engineering conference. Sponsored IEEE, 1453-1458. [Google Scholar]
  8. Bi L N. (2008) Performance of electric spindle heat pipe for machine tools and its experimental study [D]. Harbin Institute of Technology. [Google Scholar]
  9. Schneider M, Bland T. (1994) Preliminary test results of reflux-cooled electromechanical actuator[J]. Aiaa Journal. [Google Scholar]
  10. Qiu S. C. (2016) Research on heat dissipation of electromechanical actuator motors for multi-electric aircraft. Nanjing University of Aeronautics and Astronautics. [Google Scholar]
  11. Niu W J, Lian W L, Lin L J, et al. (2020) Heat pipe technology-based heat dissipation characteristics of aircraft electric actuators[J]. Journal of Aerodynamics, v.35(04):44-54. [Google Scholar]
  12. Wen W Y. (2017) Design and performance analysis of heat pipe based heat sink system for new energy vehicle motor [D]. South China University of Technology. [Google Scholar]
  13. Zhang J P. (2018) Research on high efficiency and high power density permanent magnet synchronous motors for high altitude vehicles [D]. Harbin Institute of Technology. [Google Scholar]
  14. Lindner A., Hahn I., (2017) Practical Evaluation of a Passive Stator Cooling Concept without Thermal Stacking, IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), pp. 132–139. [Google Scholar]
  15. Huang J., Nain S. S. i, R. Miller, D. Rizzo, K. Sebeck, S. Shurin, J. Wagner, (2019) A Hybrid Electric Vehicle Motor Cooling System – Design, Model, and Control, IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4465–4478. [Google Scholar]
  16. Muelle M. A. r, Burchell J., Chong Y. C., O. Keysan, A. McDonald, M. Galbraith, E. J. P. Echenique Subiabre, (2019) Improving the Thermal Performance of Rotary and Linear Air-Cored Permanent Magnet Machines for Direct Drive Wind and Wave Energy Applications, IEEE Transactions on Energy Conversion, vol. 34, no. 2, pp. 773–781. [Google Scholar]
  17. Putra N., Ariantara B., (2017) Electric Motor Thermal Management System using L-Shaped flat Heat Pipes, Applied Thermal Engineering, Elsevier, vol. 127, pp. 1156–1163. [Google Scholar]
  18. Yang W G. (2020) Analysis of a new method and engineering implementation for rotor heat dissipation of special motors for vacuum dry pumps [D]. Shenyang University of Technology. [Google Scholar]
  19. Wakefield. (2019) www.wakefield-vette.com. [Google Scholar]
  20. Chen, C.S.. (2016) Research on energy-saving technology and application of thermal conductivity and heat dissipation in electric motors [D]. Donghua University. [Google Scholar]
  21. He Y B. (2012) Phase change heat transfer study of liquid nitrogen heat pipe subcooler for high temperature superconducting motor [D]. Harbin Institute of Technology. [Google Scholar]
  22. Gong C Y. (2012) Research on intelligent control of solar water heater based on stepper motor [D]. Nanchang University. [Google Scholar]
  23. Ma, B. F.. (2008) Research on the thermal performance of liquid hydrostatic electric spindles based on heat pipe heat transfer and related technologies [D]. Harbin Institute of Technology. Schneider, M., & Bland, T. (1994). Preliminary test results of reflux-cooled electromechanical actuator. Aiaa Journal. [Google Scholar]
  24. Wu J N, (2019) Nuclear grade 1 stainless steel Ushaped heat transfer tube for external heat exchanger of large advanced pressurized water reactor main pump shield motor. Zhejiang Province, Zhejiang Juli Special Material Technology Co. [Google Scholar]
  25. Wang Y S. (2019) Research on the heat dissipation effect of automotive motor based on heat pipe improvement[J]. Automotive Practical Technology.: 137-141. [Google Scholar]
  26. Zhang Y. (2019) Design and performance study of automatic powder filling machine for copper powder sintered heat pipe[D]. South China University of Technology. [Google Scholar]
  27. Sun Y L. (2019) Design and performance analysis of heat pipe type heat sink system for permanent magnet synchronous motor[D]. South China University of Technology. [Google Scholar]
  28. Wang S P, Wu B X, Wen W Y, He J B. (2018) Thermal analysis of new energy vehicle motor based on heat pipe air cooling system[J]. Motor and Control Applications, 45(08): 91-97+109. [Google Scholar]
  29. Zhang X T. (2018) Research on high-efficiency and high-torque density permanent magnet synchronous motor for solar UAV [D]. Harbin Institute of Technology. [Google Scholar]
  30. Chen, C.S., Chen, G., Liang, S.Q. (2017) Finite element analysis and optimization of heat-conducting tube and motor rotor overfilling coupling[J]. Journal of Donghua University (Natural Science Edition), 43(06):902-907. [Google Scholar]
  31. Liu, T. (2017) Research and development of automatic temperature difference detection system for solar gravity heat pipe batching[D]. China University of Metrology. [Google Scholar]
  32. Zhai Z K. (2017) Research on heat transfer performance of rotating heat pipe and its application exploration in anti-icing of fairing[D]. Nanjing University of Aeronautics and Astronautics. [Google Scholar]
  33. Hu J C, Yue YL, Wang T H, Yuan G, Zhang ZS. (2001) Application and development status of heat pipe[J]. Refrigeration, (03):20-26. [Google Scholar]
  34. Dai Q Z. (1992) The application of heat pipe in motor cooling[J]. Journal of Electrical Engineering Technology. [Google Scholar]
  35. Yang Q Y. (1987) Application of rotating heat pipe on electric motor[J]. Modern Energy Conservation. [Google Scholar]
  36. Huang, W.K., Liu, C.W.. (1985) Application of rotating heat pipe on three-phase asynchronous speed control motor[J]. Small and medium-sized motors. [Google Scholar]
  37. Liu R, Lin G P. (2010) Study of loop heat pipe improvement for electric actuator heat dissipation[J]. Journal of Civil Aviation Flight Academy of China, 21(1):48-51. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.