Open Access
Issue
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
Article Number 01038
Number of page(s) 7
Section Energy Development and Energy Storage Technology Research and Development
DOI https://doi.org/10.1051/e3sconf/202126101038
Published online 21 May 2021
  1. Li, Z., Pan, Y., Sun, R. (1985) Principles and Applications of Air Pollution Meteorology. Meteorological Press, Beijing. [Google Scholar]
  2. Courtney, M., Wanger, R., Lindelow, P. (2008) Testing and comparison of lidars for profile and turbulence measurements in wind energy. In: IOP Conference Series Earth and Environmental Science. 1: U172-U185. [Google Scholar]
  3. Huffaker, R.M. (1970) Laser Doppler detection systems for gas velocity measurement. J. Appl. Opt., 9:1026. [Google Scholar]
  4. Barthelmie, R. J., Folkerts, L., Ormel, F. T., Sanderhoff, P., Eecen, P. J., Stobbe, O., Nielsen, N. M. (2003) Offshore wind turbine wakes measured by Sodar. J. Atmos. Oceanic Technol., 20: 466-477. [Google Scholar]
  5. Kane, T. J., Kozlovsky, W. J., Byer, R. L. (1987) Coherent laser radar at 1.06 μm using Nd: YAG lasers. J. Opt. letters, 12: 239-241. [Google Scholar]
  6. Abari, C. F., Pedersen, A. T., Mann, J. (2014) An allfiber image-reject homodyne coherent Doppler wind lidar. J. Opt. Express, 22: 25880-25894. [Google Scholar]
  7. Arisholm, G., Nordseth, O., Rustad, G. (2004) Optical parametric master oscillator and power amplifier for efficient conversion of high-energy pulses with high beam quality. J. Opt. Express, 12: 4189-4197. [Google Scholar]
  8. Antoniou, I., Pedersen, S. M., Enevoldsen, P. B. (2010) Wind shear and uncertainties in power curve measurement and wind resources. J. Wind Eng., 33: 449-468. [Google Scholar]
  9. Wagner, R., Pedersen, T. F., Courtney, M., Antoniou, I., Davoust, S., Rivera, R. L. (2014) Power curve measurement with a nacelle mounted lidar. J. Wind Eng., 17: 1441-1453. [Google Scholar]
  10. Harris, M., Pearson, G. N., Vaughan, J. M., Letalick, D., Karlsson, C. (1998) The role of laser coherence length in continuous-wave coherent laser radar. J. Mod. Opt., 45: 1567–1581. [Google Scholar]
  11. Van Exter, M. P., Kuppens, S. J. M., Woerdman, J. P. (1992) Excess phase noise in self-heterodyne detection. IEEE. J. Quantum Elect., 28: 580–584. [Google Scholar]
  12. Rodrigo, P. J., Pedersen, C. (2010) Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control. J. Opt. Expres, 18: 5320-5327. [Google Scholar]
  13. Rodrigo, P. J., Pedersen, C. (2012) Field performance of an all-semiconductor laser coherent Doppler lidar. J. Opt. Lett., 37: 2277-2279. [Google Scholar]
  14. Karlsson, C. J., Olsson, F. A., Harris, M., Letalick, D. (2000) All-Fiber Multifunction Continuous-Wave Coherent Laser Radar at 1.55 μm for Range, Speed, Vibration, and Wind Measurements. J. Appl. Opti., 39: 3716-3726. [Google Scholar]
  15. Harris, M., Pearson, G. N., Vaughan, J. M., Letalick, D., Karlsson, C. (1998) The role of laser coherence length in continuous-wave coherent laser radar, J. Mod. Opt., 45: 1567-1581. [Google Scholar]
  16. Van Exter, M. P., Kuppens, S. J. M., Woerdman, J. P. (1992) Excess phase noise in self-heterodyne detection. IEEE J. Quantum Elect., 28: 580-584. [Google Scholar]
  17. Fujii, T., Fukuchi, T. (2005) Laser remote sensing. New York, USA: Taylor & Francis Group. [Google Scholar]
  18. Hansen, R. S., Pedersen, C. (2008) All semiconductor laser Doppler anemometer at 1.55 μm. Opt. Express, 16: 18288-18295. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.