Open Access
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
Article Number 02004
Number of page(s) 5
Section Energy Chemistry Performance and Material Structure Analysis
Published online 21 May 2021
  1. E. Dendy Sloan, J. and C. Koh, Clathrate Hydrates of Natural Gases, Third Edition. 2007: Taylor & Francis. [Google Scholar]
  2. Kvenvolden, K.A., Methane hydrate A major reservoir of carbon in the shallow geosphere? Chemical Geology, 1988. 71(1-3): p. 41-51. [CrossRef] [Google Scholar]
  3. Lekvam, K. and P. Ruoff, A reaction kinetic mechanism for methane hydrate formation in liquid water. Journal of the American Chemical Society, 1993. 115(19): p. 8565-8569. [Google Scholar]
  4. Englezos, P. and J. Lee, Gas hydrates: A cleaner source of energy and opportunity for innovative technologies. Korean Journal of Chemical Engineering, 2005. 22(5): p. 671-681. [Google Scholar]
  5. Brown, T.D., C.E. Taylor, and M.P. Bernardo, Rapid Gas Hydrate Formation Processes: Will They Work? Energies, 2010. 3(6): p. 1154-1175. [Google Scholar]
  6. Ning, F., et al., Mechanical properties of clathrate hydrates: status and perspectives. Energy & Environmental Science, 2012. 5(5): p. 6779-6795. [Google Scholar]
  7. Sloan, E.D. and F. Fleyfel, Hydrate dissociation enthalpy and guest size. Fluid Phase Equilibria, 1992. 76(0): p. 123-140. [Google Scholar]
  8. Winters, W.J., et al., Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering, 2007. 56(1): p. 127-135. [Google Scholar]
  9. Francisca, F., et al., Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province. Earth and Planetary Science Letters, 2005. 237(3): p. 924-939. [Google Scholar]
  10. Ruppel, C., Thermal State of the Gas Hydrate Reservoir, in Natural Gas Hydrate, M. Max, Editor. 2003, Springer Netherlands. p. 29-42. [Google Scholar]
  11. Miyazaki, K., et al., Strain-Rate Dependence of Triaxial Compressive Strength of Artificial Methane-Hydrate-Bearing Sediment. International Journal of Offshore and Polar Engineering, 2010. 20(04): p. 9. [Google Scholar]
  12. Hyodo, M., et al., Influence of Fines Content on the Mechanical Behavior of Methane Hydrate-Bearing Sediments. Journal of Geophysical Research: Solid Earth, 2017. 122(10): p. 7511-7524. [Google Scholar]
  13. Ye, Y. and C. Liu, Natural Gas Hydrates: Experimental Techniques and Their Applications. 2012: Springer. [Google Scholar]
  14. Christiansen, R.L. and E.D. Sloan, Mechanisms and Kinetics of Hydrate Formation. Annals of the New York Academy of Sciences, 1994. 715(1): p. 283-305. [Google Scholar]
  15. Vysniauskas, A. and P.R. Bishnoi, A Kinetic-Study of Methane Hydrate Formation. Chemical Engineering Science, 1983. 38(7): p. 1061-1072. [Google Scholar]
  16. Frenkel, D. and B. Smit, Understanding Molecular Simulation: from Algorithms to Applications (Second Edition). 2002, New York: Academic Press. [Google Scholar]
  17. Zhou, Y., Q. Li, and Q. Wang, Energy Storage Analysis of UIO-66 and Water Mixed Nanofluids: An Experimental and Theoretical Study. Energies, 2019. 12(13): p. 25-21. [Google Scholar]
  18. Hu, J., et al., Molecular simulation of thermal energy storage of mixed CO2/IRMOF-1 nanoparticle nanofluid. International Journal of Heat and Mass Transfer, 2018. 125: p. 1345-1348. [Google Scholar]
  19. Li, Q., et al., Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study. Nanomaterials, 2017. 7(9): p. 265. [Google Scholar]
  20. Cai, S., et al., Evaporation of R32/R152a mixtures on the Pt surface: A molecular dynamics study. International Journal of Refrigeration, 2020. 113: p. 156-163. [Google Scholar]
  21. Li, Q., C. Liu, and X. Chen, Molecular characteristics of dissociated water with memory effect from methane hydrates. International Journal of Modern Physics B, 2014. 28(10): p. 1450062. [Google Scholar]
  22. Li, Q., et al., Molecular characteristics of H2O in hydrate/ice/liquid water mixture. International Journal of Modern Physics B, 2015. 29(27): p. 1550185. [Google Scholar]
  23. Ning, F.L., et al., Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015. 17(4): p. 2869-2883. [Google Scholar]
  24. Cai, S., et al., Molecular Simulation Study on the Microscopic Structure and Mechanical Property of Defect-Containing sI Methane Hydrate. International Journal of Molecular Sciences, 2019. 20(9): p. 2305. [Google Scholar]
  25. Linga, P., R. Kumar, and P. Englezos, Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chemical Engineering Science, 2007. 62(16): p. 4268-4276. [Google Scholar]
  26. Peng, T., et al., Surface force at the nano-scale: observation of non-monotonic surface tension and disjoining pressure. Phys Chem Chem Phys, 2015. 17(32): p. 20502-7. [CrossRef] [PubMed] [Google Scholar]
  27. Strobel, T.A., et al., Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chemical Physics Letters, 2009. 478(4–6): p. 97-109. [Google Scholar]
  28. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995. 117(1): p. 1-19. [Google Scholar]
  29. Peng, T., et al., Surface Interaction of Nanoscale Water Film with SDS from Computational Simulation and Film Thermodynamics. Entropy, 2017. 19(11): p. 620. [Google Scholar]
  30. Cai, S., et al., Effects of mole fraction and surface wettability on evaporation of Ar/Kr mixtures: A molecular dynamics study. Journal of Molecular Liquids, 2020. 319: p. 114189. [Google Scholar]
  31. BÁEz, L.A. and P. Clancy, Computer Simulation of the Crystal Growth and Dissolution of Natural Gas Hydrates. Annals of the New York Academy of Sciences, 1994. 715(1): p. 177-186. [Google Scholar]
  32. Rodger, P.M., T.R. Forester, and W. Smith, Simulations of the methane hydrate/methane gas interface near hydrate forming conditions. Fluid Phase Equilibria, 1996. 116(1-2): p. 326-332. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.