Open Access
Issue |
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
|
|
---|---|---|
Article Number | 02090 | |
Number of page(s) | 5 | |
Section | Energy Chemistry Performance and Material Structure Analysis | |
DOI | https://doi.org/10.1051/e3sconf/202126102090 | |
Published online | 21 May 2021 |
- Filhol, J. S.; Deschamps, J.; Dutremez, S. G.; Boury, B.; Barisien, T.; Legrand, L.; Schott, M. Polymorphs and Colors of polydiacetylenes: a first principles study. J. Am. Chem. Soc. 2009, 131, 6976-6988. [CrossRef] [PubMed] [Google Scholar]
- Diegelmann, S. R.; Tovar, J. D. Polydiacetylene-peptide 1D nanomaterials. Macromol. Rapid Commun. 2013, 34, 1343-1350. [CrossRef] [PubMed] [Google Scholar]
- Qian, X.; Städler, B. Recent developments in polydiacetylene-based sensors. Chem. Mater. 2019, 31, 1196-1222. [Google Scholar]
- Weston, M.; Tjandra, A. D.; Chandrawati, R. Tuning chromatic response, sensitivity, and specificity of polydiacetylene-based sensors. Polym. Chem. 2020, 11, 166-183. [Google Scholar]
- Fang, F.; Meng, F.; Luo, L. Recent advances on polydiacetylene-based smart materials for biomedical applications. Mater. Chem. Front. 2020, 4, 1089-1104. [Google Scholar]
- Wen, J. T.; Roper, J. M.; Tsutsui, H. Polydiacetylene supramolecules: Synthesis, characterization, and emerging applications. Ind. Eng. Chem. Res. 2018, 57, 9037-9053. [Google Scholar]
- Pham, T. C.; Kim, H. S.; Lee, S. Polydiacetylenes functionalized with chelidamic acid and 2, 2’-dipicolylamine for colorimetric responses to cadmium ions. Bull. Korean Chem. Soc. 2020, DOI: 10.1002/bkcs.12177 [Google Scholar]
- Khanantong, C.; Charoenthai, N.; Wacharasindhu, S.; et al. Achieving reversible thermochromism of bisdiynamide polydiacetylene via self-assembling in selected solvents. Colloids and Surfaces A 2020, 603, 125225. [Google Scholar]
- Pankaew, A.; Traiphol, N.; Traiphol, R. Tuning the sensitivity of polydiacetylene-based colorimetric sensors to UV light and cationic surfactant by co-assembling with various polymers. Colloids and Surfaces A 2021, 608, 125626. [Google Scholar]
- Deng, J. L.; Guo, C. X.; Lu, W. S.; Liu, T.; Jiang, L. Diacetylene vesicles-a biomolecular recognition device based on molecular assembly. Progress in Chemistry 2006, 18, 1397-1408. [Google Scholar]
- Lee, S.; Kim, J.-Y.; Chen, X.; Yoon, J. Recent progress in stimuli-induced polydiacetylenes for sensing temperature, chemical and biological targets. Chem. Commun. 2016, 52, 9178-9196. [Google Scholar]
- Wang, D.; Yan, J.; Wang, J. Polydiacetylene liposomes with phenylboronic acid tags: a fluorescence turn-on sensor for sialic acid detection and cell-surface glycan imaging. Nanoscale 2018, 10, 4570-4578. [CrossRef] [PubMed] [Google Scholar]
- Ahn, D. J.; Lee, S.; Kim, J.-M. Rational design of conjugated polymer supramolecules with tunable colorimetric responses. Adv. Funct. Mater. 2009, 19, 1483-1496. [Google Scholar]
- Jiang, L. X.; Luo, J.; Dong, W. J.; et al. Development and evaluation of a polydiacetylene based biosensor for the detection of H5 influenza virus. Journal of Virological Methods 2015, 219, 38-45. [Google Scholar]
- Jae-Pil, J.; Eunae, C.; Deokgyu, Y.; et al. Label-free colorimetric detection of influenza antigen based on an antibody-polydiacetylene conjugate and its coated polyvinylidene difluoride membrane. Polymers 2017, 9, 127. [Google Scholar]
- Zhou, C.; You, T.; Jang, H.; Ryu, H.; et al. Aptamer-conjugated polydiacetylene colorimetric paper chip for the detection of bacillus thuringiensis spores. Sensors 2020, 20, 3124. [Google Scholar]
- Shi, L. S.; Wu, Q. P.; Wu, H. Q.; et al. Application status and future development trend of food preservatives in my country. Food Research and Development 2008, 29, 157-161. [Google Scholar]
- Wu, Z. X. Simultaneous determination of 5 preservatives and 2 sweeteners in cakes by high performance liquid chromatography. Agricultural Engineering 2013, 3, 80-82. [Google Scholar]
- Mihyar, G. F.; Yousif, A. K.; Yamani, M. I. Determination of benzoic and sorbic acids in labaneh by high-performance liquid chromatography. J. Food Compos. Anal. 1999, 12, 53-61. [Google Scholar]
- Yang, X. F.; Yang, K. Q.; Han, M.; et al. Determination of 7 preservatives in condiments by gel permeation chromatography purification-gas chromatography. Chinese Condiments 2011, 36, 107-110. [Google Scholar]
- Pan, Z.; Wang, L.; Mo, W.; Wang, C.; Hu, W.; Zhang, J. Determination of benzoic acid in soft drinks by gas chromatography with on-line pyrolytic methylation technique. Anal. Chim. Acta 2005, 545, 218-223. [Google Scholar]
- Xue, L.; Chen, L.; Dong, J.; et al. Dispersive liquid-liquid microextraction coupled with surface enhanced Raman scattering for the rapid detection of sodium benzoate. Talanta 2019, 208, 120360. [PubMed] [Google Scholar]
- Li, X.; Liu, W.; Yue, X.; et al. A competitive immunoassay using hapten-modified polydiacetylene vesicles for homogeneous and sensitive detection of sodium benzoate. Sensors & Actuators 2018, 258, 1060-1065. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.