Open Access
Issue
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
Article Number 04006
Number of page(s) 4
Section Environmental Ecological Restoration and Energy Saving, Environmental Protection and Emission Reduction
DOI https://doi.org/10.1051/e3sconf/202126104006
Published online 21 May 2021
  1. M.X. Loukidou, K.A. Matis, A.I. Zouboulis, et al. Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res. J. 37, 4544-4552 (2003) [CrossRef] [PubMed] [Google Scholar]
  2. J.A. Krumins, N.M. Goodey, F. Gallagher. Plant-soil interactions in metal contaminated soils. Soil. Biol. Biochem. J. 80, 224-231 (2015) [Google Scholar]
  3. M. Rajkumar, S. Sandhya, M.N.V. Prasad, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. J. 30, 1562-1574 (2012) [CrossRef] [PubMed] [Google Scholar]
  4. A. Ayangbenro, O. Babalola. A new strategy for heavy metalpolluted environments: a review of microbial biosorbents. Int. J. Env. Res. Pub. He. J. 14, 94 (2017) [Google Scholar]
  5. K.A. Mosa, I. Saadoun, K. Kumar, et al. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant. Sci. J. 7, 303 (2016) [Google Scholar]
  6. J. Bai, X. Yang, R. Du, et al. Biosorption mechanisms involved inimmobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil. J. Environ. Sci. J. 26, 2056-2064 (2014) [Google Scholar]
  7. A. Gupta, J. Joia, A. Sood, et al. Microbes as potential tool forremediation of heavy metals: a review. Microb. Biochem. Technol. J. 8 (4):364-372 (2016) [Google Scholar]
  8. Y.X. Wang, J.L. Guo, R.X. Liu, et al. Adsorption characteristics of microbial adsorbents for heavy metals. Environ. Sci. J. 72-75 (2001) [Google Scholar]
  9. G.Q. Zhou, Z.Y. Ren, H.Z. Yang, et al. Adsorption of Cd2+ and other heavy metal ions by microorganism Biotechnology bulletin, J. 155-159 (2013) [Google Scholar]
  10. T.L. Li, H.J. Huang, Y. Peng, et al. Screening and adsorption of lead-resistant microorganisms. Journal of Anhui Agricultural University, J. 45, 696-702 (2018) [Google Scholar]
  11. Y. Ma, Y.M. Luo, Y. Teng, et al. Rhizobacteria and its application in phytoremediation of contaminated soil. Acta Pedologica Sinica, J. 50, 1021-1031 (2013) [Google Scholar]
  12. M. Seneviratne, G. Seneviratne, H. Madawala, et al. Role of rhizospheric microbes inheavy metal uptake by plants. Cham: Springer, J. 147-163 (2017) [Google Scholar]
  13. S. Lampis, C. Santi, A. Ciurli, et al. Promotion of arsenic phytoextraction efficiency inthe fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front. Plant. Sci. J. 6, 80 (2015) [Google Scholar]
  14. Y. Ma, M.N.V. Prasad, M. Rajkumar, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediationofmetalliferous soil. Biotechnol. Adv. J. 29, 248-258 (2011) [Google Scholar]
  15. M.S. Khan, A. Zaidi, P.A. Wani, et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminatedsoils: a review. Organic Farming, Pest Control and Remediation of Soil Pollutants, J. 8, 319-350 (2009) [Google Scholar]
  16. G.C. Zhao, X.Y. Liao, X.L. Yan, et al. Study on accumulation ability of arsenic in soil by microorganisms. Environ. Sci. J. 31, 431-436 (2010) [Google Scholar]
  17. K. Fischer, H.P. Bipp. Removal of heavy metals from soil components and soils by natural chelating agents Part II Soil extraction bysugar acids. Water Air Soil Poll. J. 138, 271-288 (2002) [Google Scholar]
  18. Z. Yang, Z.L. Wang, B.W. Li, et al. Promotion effect of microorganism on phytoremediation of heavy metal contaminated soil. Chinese Journal of Applied Ecology, J. 20, 2025-2031 (2009) [Google Scholar]
  19. E.M. Muehe, P. Igold, I.J. Aktylou, et al. Pheremicrobial community composition affects cadmium and zinc uptakeby the metalhyperaccumulating plant Arabidopsis halleri. Appl. Environ. Microbiol. J. 2173-2181 (2015) [Google Scholar]
  20. G.C. Zhao, J. Liang, J.Y. Dan, et al. Advances in relationship between soil microbes and plants. Southwest Forestry University. J. 31, 83-88 (2011) [Google Scholar]
  21. S. Spaepen, J. Vanderleyden. Auxin and plantmicrobe inter-actions. Csh. Perspect. Biol. J. 3, a001438 (2011) [Google Scholar]
  22. C. Ai, J.W. Sun, X.B. Wang, et al. Advances in relationship between plant rhizosphere sedimentation and soil microbes. Journal Of Plant Nutrition and Fertilizers, J. 21, 1343-1351 (2015) [Google Scholar]
  23. W.L. Chen, J. LI, H.H. Zhu, et al. Advances in Rhizosphere Microbial Regulation of Plant Root Architecture. Acta Ecologica Sinica, J. 36, 5285-5297 (2016) [Google Scholar]
  24. Y. Ma, M.N.V. Prasad, M. Rajkumar, et al. Plant growth promoting rhizobacteria andendophytes accelerate phytoremediation ofmetalliferous soils. Biotechnol Adv. J. 29, 248-258 (2011) [Google Scholar]
  25. H. Han, X.Y. Wang, H. Cai, et al. Screening of heavy metal immobilization plant growth-promoting bacteria and its inhibition effect on heavy metal accumulation in wheat. Environ. Sci. J. 40, 3339-3346 (2019) [Google Scholar]
  26. V.S. Saravanan, M. Madhaiyan, Thangaraju M., et al. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere, J. 66, 1794-1798 (2007) [Google Scholar]
  27. X. Sheng, J. Xia. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere, J. 64, 1036-1042 (2006) [Google Scholar]
  28. M. Madhaiyan, S. Poonguzhali, T. Sa. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere Oxford, J. 69, 220-228 (2007) [Google Scholar]
  29. C. Mastretta, S. Taghavi, D. Lelie, et al. Endophytic bacteria from seeds of nicotiana tabacum can reduce cadmium phytotoxicity. Int. J. Phytoremediat. J. 11, 251-267 (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.