Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 01009
Number of page(s) 9
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202126401009
Published online 02 June 2021
  1. Schwab A.V., Brendakov V.N. Mathematical modeling of turbulent flow in a centrifugal apparatus, News of Tomsk Polytechnic University. 308, Russia, (2005). [Google Scholar]
  2. Turubaev R.R., Schwab A.V. A numerical study of the aerodynamics of a swirling flow in a vortex chamber of a combined pneumatic apparatus, Tomsk State University Bulletin. (47). pp 87–98, Russia, (2017) [Google Scholar]
  3. Versteegh T. A., Nieuwstadt T. M. Turbulent Budgets of Natural Convection in an Infinite, Differentially Heated, Vertical Channel, Intern. J. Heat Fluid Flow. 19. p. 135. (1997). [Google Scholar]
  4. Boudjemadi R., Mairi V., LaurenceD, Le Quere P. Direct Numerical Simulation of Natural Convection in a Vertical Channel, A Tool for Second-Moment Closure Modelling, Proc. Engineering Turbulence Modelling and Experiments 3. Amsterdam: Elsevier. p. 39. (1996) [Google Scholar]
  5. Peng S.-H., Davidson L. Large Eddy Simulation of Turbulent Buoyant Flow in a Confined Cavity, Intern. J. Heat Fluid Flow. 22. p. 323. (2001) [Google Scholar]
  6. Cabot W., Moin P. Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow, Flow, Turbulence and Combustion. (63). p 269. (1999) [Google Scholar]
  7. Platonov D.V., Minakov A.V., Dekterev A.A., Numerical modeling of spatial flows with swirling flow, Computer Research and Modeling. 5. (4). pp. 635–648, Russia, (2013) [Google Scholar]
  8. Spalart P.R., Shur M.L. On the sensitization of turbulence models to rotational and curvature, Aerospace Science and Technology. 1 (5), pp. 297–302, (1997). [Google Scholar]
  9. Smirnov P., Menter F. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term, Proc. of ASME Turbo Expo 2008: Power for Land, Sea and Air, GT 2008, Germany, Berlin, June 9-13, p 10. (2008). [Google Scholar]
  10. Malikov Z.M., Yuldashev A.T., Madaliev M.E. An experimental study of the effectiveness of a centrifugal air-passage separator, Problems of mechanics. pp 27–30, Uzbekistan, (2019) [Google Scholar]
  11. Vasilevsky M.V., Zykov E.G. Calculation of the efficiency of gas purification in inertial apparatus, Tomsk: TPU Publishing House, p. 86, Russia [Google Scholar]
  12. Loitsyansky L.G. The mechanics of fluid and gas, Moscow, Science. p. 840, Mexanika jidkocti i gaza, Moscow, Nauka, (1987) [Google Scholar]
  13. Bradshaw P., Ferriss D.H., Atwell N.P. “Calculation of boundary layer development using the turbulent energy equation”, J. Fluid Mech., 28. pp 593–616. (1967). [Google Scholar]
  14. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flow, AIAA Paper. -12; (1). pp. 439–478. (1992). [Google Scholar]
  15. Madaliev M.E. Numerical simulation of the flow in a centrifugal separator based on the SA and SARC models, Mathematical modeling and numerical methods. N° 2, p. 35–50, Russian, (2019) [Google Scholar]
  16. Mises R., Zs. angew. Math. u. Mech., 7, pp. 425, (1927). [Google Scholar]
  17. Launder B.E., Reece G.J. and Rodi W. Progress in the development of a Reynolds -stress turbulence closure. J. Fluid Mech. 68: pp 537–566. (1975). [Google Scholar]
  18. Speziale C.G., Sarkar S., Gatski T.B. Modeling the pressure strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227: pp 245272, (1991). [Google Scholar]
  19. Shilyaev M.I., Shilyaev A.M. Modeling the process of dust collection in a once-through cyclone. 2. The calculation of the fractional slip coefficient], Thermophysics and aeromechanics. 10. (3). pp 427–437, Russia, (2003) [Google Scholar]
  20. Shilyaev M.I., Shilyaev A.M. Modeling the process of dust collection in a once-through cyclone. 1. Aerodynamics and the diffusion coefficient of particles in a cyclone chamber, Thermophysics and Aeromechanics. 10. (2). pp 157–170, Russian, (2003) [Google Scholar]
  21. Baranov D.A., Kutepov A.M., Lagutkin M.G. Calculation of separation processes in hydrocyclones], Theoretical Foundations of Chemical Technology. 30. (2). pp 117122, Russia, (1996) [Google Scholar]
  22. Akhmetov T.G., Porfilyeva R.T., Gaysin L.G. Chemical technology of inorganic substances. - Prince 1. - M.: Higher school. p. 688. (2002). [Google Scholar]
  23. Patankar S.V. Numerical Heat Transfer and Fluid Flow. Taylor and Francis. ISBN 978-0-89116-522-4, 1980. [Google Scholar]
  24. Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence. -London: Academic Press, p 169, (1972). [Google Scholar]
  25. Julianne C.D., Jan-Renee C., “Evaluation of Full Reynolds Stress Turbulence Models in FUN3D”, NASA/TM—2017-219468, pp 1–36, Texas, January 9-13, (2017). [Google Scholar]
  26. M. Usarov, G. Mamatisaev, G. Ayubov, D. Usarov and D. Khodzhaev. Dynamic calculation of boxed design of buildings. IOP Conf. Series: Materials Science and Engineering 883 (2020) 012186. https://doi.org/10.1088/1757-899X/883/1/012186, (2020) [Google Scholar]
  27. M. Usarov, G. Ayubov, G. Mamatisaev and B. Normuminov. Building oscillations based on a plate model 2020 IOP Conf. Ser.: Mater. Sci. Eng. 883012211. https://doi.org/10.1088/1757-899X/883/1/012211, (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.