Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 01014
Number of page(s) 10
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202126401014
Published online 02 June 2021
  1. Nikitin N.V., Spiridonov Yu.Ya., Shestakov V.G. Scientific and practical aspects of the technology of application of modern herbicides in crop production, Moscow: RASHN. p. 189. (in Russian). (2010) [Google Scholar]
  2. Nikitin N.V., Spiridonov Yu.Ya., Abubikerov V.A. et al. Anti-entrainment technology of introducing herbicides of a new generation. Plant Protection Bulletin - VIZR, (3). pp. 47–55. (in Russian). (2008). [Google Scholar]
  3. Arkhipov V.A., Matvienko O.V., Zharova I.K., Maslov E.A., Perfilieva K.G., Bulavko A.M. Modeling of the dynamics of a liquid-droplet refrigerant under aerial firefighting. Tomsk State University. Journal of Mathematics and Mechanics, 62, pp. 68–78.(in Russian). (2019). [Google Scholar]
  4. Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence, London: Academic Press, p 169. (1972). [Google Scholar]
  5. Wilcox, D. C., Reassessment of the Scale-Determining Equation for Advanced Turbulence Models, AIAA Journal. 26. (11). pp. 1299–1310. DOI: 10.2514/3.10041. (1988). [CrossRef] [Google Scholar]
  6. Spalart P. R., Allmaras S. R. A one-equation turbulence model for aerodynamic flows, AIAA Paper 0439. DOI: 10.2514/6.1992-439. (1992). [Google Scholar]
  7. Menter F. R. Zonal two-equation k-co turbulence models for aerodynamic flows, AIAA Paper 1993-2906. DOI: 10.2514/6.1993-2906. (1993) [Google Scholar]
  8. Malikov Z. Mathematical model of turbulence based on the dynamics of two fluids, Applied Mathematical Modeling 82 (2020) pp 409–436. DOI: 10.1016/j.apm.2020.01.047. (2020) [Google Scholar]
  9. Turbulence modeling Resource. NASA Langley Research Center, http://turbmodels.larc.nasa.gov. [Google Scholar]
  10. Malikov Z.M., Madaliev M.E. Numerical modeling of two-phase flow in a centrifugal separator, ISSN 0015-4628, Fluid Dynamics, 2020, 55, (8), pp. 1012–1028. © Pleiades Publishing, Ltd., (2020). [Google Scholar]
  11. Malikov Z.M. “Mathematical model of turbulent heat transfer based on the dynamics of two fluids”. Applied Mathematical Modeling, 91, pp. 409 - 436. [Google Scholar]
  12. Bridges, J., Wernet, M. P. “Establishing Consensus Turbulence Statistics for Hot Subsonic Jets,” AIAA Paper 2010, p 3751, 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden, June, (2010) [Google Scholar]
  13. Hussein H.J., Capp S.P., George W.K. Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet, J. Fluid Mech. (258), pp. 31–75. (1994). [Google Scholar]
  14. Wygnanski I., Fiedler H. Some measurements in the self-preserving jet, J. Fluid. Mech., 38, pp. 577–612, (1969). [Google Scholar]
  15. Darisse A., Lemay J., Benaissa A. LDV measurements of well converged third order moments in the far field of a free turbulent round jet // Exp. Thermal Fluid Sci. 44, pp. 825–833, (2013). [Google Scholar]
  16. Gutmark E., Wygnanski I.J. The planar turbulent jet, J. Fluid Mech., 73, pp. 465–495, (1976). [CrossRef] [Google Scholar]
  17. Ramaprian B.R., Chandrasekhara M.S. LDA measurements in plane turbulent jets, J. Fluids Eng. 107, pp. 264–271, (1985). [Google Scholar]
  18. Bradbury L.J.S. The structure of a self-preserving turbulent plane jet, J. Fluid Mech, 23, pp. 31–64, (1965). [Google Scholar]
  19. Heskestad G. Hot-wire measurements in a plane turbulent jet, J. Appl. Mech., 32, pp. 721–734, (1965). [Google Scholar]
  20. Von Mises R. “Bemerkungen zur Hydrodynamik”. Z. Angew. Math. u. Mech., 7, p 425 (1927). [Google Scholar]
  21. Klyachko L.S. On one feature of the mechanism of the flow effect on solid bottom particles. Justification of the minimum air velocities in the air ducts of dedusting ventilation units. - In: Theory and practice of dedusting ventilation. L.: Profizdat, 1952, pp. 60–73 (Tr. LIOT: Issue 5). (in Russian). (1952). [Google Scholar]
  22. Anderson D., Tannehill J., Pletcher R. Computational fluid mechanics and heat transfer, 1. Moscow. “Mir”. p 107. (1990). [Google Scholar]
  23. Bazarov D., Norkulov B., Vokhidov O., Uljaev F., Ishankulov, Z. Two-dimensional flow movement in the area of protective regulatory structures. IOP Conf. Ser. Mater. Sci. Eng. 890, 012162 (2020) [Google Scholar]
  24. Bazarov D. and Vokhidov O. Extinguishing Excess Flow Energy in Spillway Structures. In book: Proceedings of EECE 2020, LNCE 150, pp. 535–545. (2021) DOI: 10.1007/978-3-030-72404-752 [Google Scholar]
  25. Krutov A., Choriev R., Norkulov B., Mavlyanova D. and Shomurodov A. Mathematical modelling of bottom deformations in the kinematic wave approximation. IOP Conf. Ser. Mater. Sci. Eng. 1030, 012147 (2021). [CrossRef] [Google Scholar]
  26. Krutov A., Norkulov B., Uljaev F., and Jamalov F. Results of a numerical study of currents in the vicinity of a damless water intake. IOP Conf. Ser. Mater. Sci. Eng. 1030, 012121 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.