Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 01016
Number of page(s) 8
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202126401016
Published online 02 June 2021
  1. William J.J. Llayton, Friedhelm Schieweck, and Ivan Yotov, Coupling fluid flow with porous media flow, SIAM J. NUMER. ANAL., 40 (6), pp. 2195–2218 [Google Scholar]
  2. Dayle Jogiel, Balswaroop Bhatt, Flow of immiscible fluids in a naturally permeable channel, International Journal of Pure and Applied Mathematics, 78 (3), pp. 435–449, (2012) [Google Scholar]
  3. Kirill Tsiberkin, Ekaterina Kolchanov, and Tatyana Lyubimov, Verification of the boundary condition at the porous medium-fluid interface, EPI Web Conferences 114, 02125 (2016) DOI: 10.105/epjconf/201611402125. (2016). [Google Scholar]
  4. Philippe Angot, Well-posed stokes, brinkman and stokes/darcy coupling revisited with new jump interface conditions, Mathematical Modelling and Numerical Analysis, ESAIM: M2AN 52 pp 1875–1911, https://doi.org/10.1051/m2an/2017060. (2018) [Google Scholar]
  5. Matthias Ehrhardt, An Introduction to Fluid-Porous Interface Coupling, Progress in computational physics, 2:3–12, 2000. [Google Scholar]
  6. Fernando A. Moralesa, Ralph E. Showalterb, A Darcy-Brinkman model of fractures in porous media, Journal of Mathematical Analysis and Applications, J. Math. Anal. Appl. 452, pp. 1332–1358, (2017). [Google Scholar]
  7. Beavers G. S., Joseph D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, pp. 197–207, (1967), [CrossRef] [Google Scholar]
  8. Saffman P. G. On the Boundary Condition at the Surface of a Porous Medium. Stadies in Applied Mathematics, pp. 93–101, https://doi.org/10.1002/sapm197150293. (1971) [Google Scholar]
  9. J. Alberto Ochoa-Tapia, J. Whitaker. S Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development, International Journal of Heat and Mass Transfer, 38 (14), September 1995, pp 2635–2646, https://doi.org/10.1016/0017-9310(94)00346-W. (1995) [Google Scholar]
  10. J. Ochoa-Tapia, J.A., Whitaker, S., Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effect. J. Porous Media 1, pp. 201–217, (1998). [Google Scholar]
  11. Yu, P., T.S. Zeng, Y. Low, Y. T., A Numerical for flows in porous and homogenous fluid domains coupled at the interface by stresss jump. Int. J. Numer. Meth. Fluids 53, pp 1755–1775, https://doi.org/10.1002/fld.1383 [Google Scholar]
  12. Oleg Iliev and Vsevolod Laptev. On numerical simulation of flow through oil filters. Computing and Visualization in Science, 6(2) pp 139–146, Mar 2004. ISSN 14330369. DOI: 10.1007/s00791-003-0118-8. URL https://doi.org/10.1007/s00791-003-0118-8. (2004). [Google Scholar]
  13. Ershin Sh. A., Zhapbasbayev U. K., Model of Turbulent Motion of Incompressible Liquid in Apparatus with a Permeable Partition, Publishing House of the SB RAN: Applied Mechanics and Technical Physics [Google Scholar]
  14. Gaev E. A. Shikhaliev S. Z., Numerical study of fluid inlet into a channel with a linear easily permeable roughness, Applied hydrodynamics, 4 (76), pp. 32–39, (2002). [Google Scholar]
  15. Dalabaev, U., Numerical investigation of the character of the lift on a cylindrical particle in Poiseuille flow of a plane channel, 6 November 2011, https://doi.org/10.1007/s10891-011-0609-2. (2011). [Google Scholar]
  16. Dalabaev, U. Structure of flow through an immovable granular layer. J Eng Phys Thermophys 70, pp 379–382 https://doi.org/10.1007/BF02662134. (1997). [Google Scholar]
  17. Kazunori Fujisawa, Akira Murakami, Numerical analysis of coupled flows in porous and fluid domains by the Darcy-Brinkman equations, Soils and Foundations, 58, (5), October 2018, pp 1240–1259 https://doi.org/10.1016/j.sandf.2018.07.003. (2018). [Google Scholar]
  18. Faizullaev, D. F., Laminar Motion of Multiphase Media in Conduits, Springer US, ISBN 978-1-4899-4832-8 (1969). [Google Scholar]
  19. Nigmatulin, R. I., Fundamentals of the mechanics of heterogeneous media, Moscow, Izdatel’stvo Nauka, p 336. In Russian. (1978). [Google Scholar]
  20. Patankar S. Numerical Heat Transfer and fluid Flow, ISBN 9780891165224 Published January 1, by CRC Press. (1980). [Google Scholar]
  21. Dalabaev U. Computing Technology of a Method of Control Volume for obtaining of the Approximate Analytical Solution one-dimensional Convection-diffusion Problems. Open Access Library Journal, 5: 1104962. https://doi.org/10.4236/oalib.1104962 (2018). [Google Scholar]
  22. Mohammad Reza Murad, Arzhang Khalili, Transition layer thickness in a fluid-porous medium of multi-sized spherical beds, Exp. Fluids 46: 323–330, DOI: 10/1007/s00348-008-0562-9. (2009) [Google Scholar]
  23. Afshin Goharzadeh, Arzhang Khalili, and Bo Barker Jorgensen, Transition layer thickness at a fluid-porous interface, Physics of fluids 17: 057102, DOI: 10.1063/1.1894756. (2005) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.