Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 01027
Number of page(s) 10
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202126401027
Published online 02 June 2021
  1. Ilgamov M. A., Ivanov V. A. and Gulin B. A. Strength, stability and dynamics of shells with elastic core (Science) p. 331 (1977) [Google Scholar]
  2. Vlasov V. Z. and Leontiev N. N. 1960 Beams, slabs, shells on an elastic base “research institutes (Moscow: Nauka) p. 491. (1960). [Google Scholar]
  3. Starovoitov E. I Viscoelastoplastic layered plates and shells (Gomel) p. 344 (2002) [Google Scholar]
  4. Pleskachevsky Yu. M., Starovoitov E. I. and Leonenko D. V., Mechanics of 3-layer rods and Plates associated with an elastic foundation (M: FIZMATLIT). (2003) [Google Scholar]
  5. Alexey A., Semenov. Model of deformation stiffened orthotopic shells under dynamic loading, Journal of Siberian Federal University. Mathematics and Physic 9 (4) pp. 485–497 [Google Scholar]
  6. Bosyakov S. M. and Chzhiwei V. 2011 Analysis of free vibrations of cylindrical shells made of fiberglass with Navier boundary conditions, Mechanics of machines, mechanisms and materials (3) pp. 24–27. (2011) [Google Scholar]
  7. Latifov F.S., Seyfullaev F.A. and Alyev Sh. Sh., Free vibrations reinforced by transverse 7. ribs of an anisotropic cylindrical shell made of fiberglass with a liquid flowing in it, Applied mechanics and technical physics Vol 57 N° 4 pp. 158–162 [Google Scholar]
  8. Seyfullayev A.I. and Novruzova K.A., Oscillations of longitudinally reinforced orthotropic cylindrical shell filled with a viscous fluid, Eastern-European Journal of Enterprise Technologies 3 (75), pp. 29–33, (2015) [Google Scholar]
  9. Bolotin V. V. and Beginners Yu. N., Mechanics of multilayer structures, (M: Mechanical Engineering) p. 375 [Google Scholar]
  10. Lugovoi P. Z., Meish V. F. and Stantzel E. A Nonstationary dynamics of non-uniform shell structures (K: Knowledge) p. 538. (2005) [Google Scholar]
  11. Meish V.F. and Latanskaya L.A., Axisymmetric vibrations of three-layer cylindrical shells with piecewise-homogeneous filler with non-stationary loaded, Bulletin of Donetsk University. Series A: Natural Sciences. Science journal. - Donetsk: DonNU VIP 1 pp. 161–164. (2008) [Google Scholar]
  12. Lugovoi P. Z., 2001 Dynamics of thin-walled structures under non-stationary loads, Applied Mechanics 37 (5), pp. 44–73, (2001). [Google Scholar]
  13. Koltunov M. A., Karimov A. I. and Mavlyanov T. 1981 One method for solving the problem of the dynamical stability of thin-walled viscoelastic structures, Journal Mechanics of Composite Materials 16 (5) September pp. 591–595 (DOI: 10.1007/BF00610188) [Google Scholar]
  14. Mavlyanov T. and Koltunov M. A., Vibrations of viscoelastic orthotopic shells in various media, Journal Polymer Mechanics, 11 (5) September pp. 710–717 DOI: 10.1007/BF00859647. (1975). [Google Scholar]
  15. Noor A. K. and Burton A. K., Computational model for high temperature multilayered composite plates and shells Applied Mech. Rev 45 (10), pp. 419–446, (1992) [Google Scholar]
  16. Teshaev M. K., Safarov I. I., Kuldashov N. U., Ishmamatov M. R. and Ruziev T. R., On the Distribution of Free Waves on the Surface of a Viscoelastic Cylindrical Cavity Journal of Vibrational Engineering and Technologies 8(4) pp 579–585 [Google Scholar]
  17. Safarov I. I., Teshaev M. X., Toshmatov E., Boltaev Z. I. and Homidov F. F., Torsional vibrations of a cylindrical shell in a linear viscoelastic medium IOP Conference Series: Materials Science and Engineering 883 (1) 012190. (2020) [Google Scholar]
  18. Mirsaidov M. M., Safarov I.I., Teshaev M.K. and Boltayev Z. I., Dynamics of structural -Inhomogeneous coaxial-multi-layered systems cylinder-shells, Journal of Physics: Conference Series. 1706 (1) 012033. (2020). [Google Scholar]
  19. Teshaev M. Kh, Safarov I. I. and Mirsaidov M. M., Oscillations of multilayer viscoelastic composite toroidal pipes, Journal of the Serbian Society for Computational Mechanics 13 (2), pp. 104–115, (2019). [Google Scholar]
  20. Mirsaidov M. M., Safarov I. I. and Teshaev M. X., Dynamic instability of vibrations of thin-wall composite curvorine viscoelastic tubes under the influence of pulse pressure 164 (14013) DOI: 10.1051/e3sconf/202016414013 (2020) [Google Scholar]
  21. Boltaev Z.I., Safarov I.I. and Razokov T., Natural vibrations of spherical inhomogeneity in a viscoelastic medium, International Journal of Scientific and Technology Research 9 (1), pp. 3674–3680, (2020). [Google Scholar]
  22. Durdiev D.K. and Totieva Z.D., The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type Journal of Inverse and Ill-Posed Problems 28 (1), pp. 43–52, (2020) [Google Scholar]
  23. Durdiev D. K. and Rahmonov A. A., Inverse Problem for A System of Integro-Differential Equations for SH Waves in A Visco-Elastic Porous Medium: Global Solvability, Theoretical and Mathematical Physics(Russian Federation) 195 (3), pp. 923–937, (2018). [Google Scholar]
  24. Rahmonov X. K., Improvement of Equipment and Technology of Drying of the Cotton Mass and its Technological Assessment on the Basis of its Thermal Properties International Journal of Advanced Research in Science, Engineering and Technology, (2019) [Google Scholar]
  25. Rahmonov X. K., Development of a New Design for Drying Cotton Seeds with Purpose of Efficient Use of Heat, International Journal of Advanced Research in Science, Engineering and Technology 7 4 May (www.ijarset.com) (2020) [Google Scholar]
  26. Sadullayev N. N., Safarov A. B., Nematov S. N. and et al., Opportunities and Prospects for the Using Renewable Energy Sources in Bukhara Region, Appl Sol Energy 56 pp 291–300 https://doi.org/10.3103/S0003701X20040106. (2020) [Google Scholar]
  27. Sadullaev N. N., Mukhamedkhanov U. T., Nematov Sh. N. and Sayliev F. O., Increasing Energy Efficiency and Reliability of Electric Supply of Low Power Consumers, International Journal of Engineering Trends and Technology 68 (12) pp 43–47 DOI: 10.14445/22315381/IJETT-V68I12P208. (2019). [Google Scholar]
  28. Khusanov K., Stabilization of mechanical system with holonomic servoconstraints. IOP Conf Se:r Mater Sci Eng 883 012146. (2020) [Google Scholar]
  29. Khusanov K., Stabilization of mechanical system with nonholonomic servoconstraints constraints. IOP Conf Ser: Mater Sci Eng 883 012164 (2020) [Google Scholar]
  30. Khusanov K., Equations of motion of mechanical systems with nonlinear nonholonomic servoconstraints. IOP Conf Ser: Mater Sci Eng 869 072021. (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.