Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 01048
Number of page(s) 11
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202126401048
Published online 02 June 2021
  1. Khalaf Hamid D. Spatial Analysis to Estimate Runoff Using SCS(CN) to Wadi Almur North of Iraq, Tikrit Journal of Pure Sciences, 21 (5), pp. 110–121, (2016) [Google Scholar]
  2. Zhang B. and Govindaraju R. S., Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds, Journal of Hydrology, 273, pp. 18–34, (2003) [CrossRef] [Google Scholar]
  3. Yazdani M. R., Saghafian B., Mahdian M. H. and Soltani S. Monthly Runoff Estimation Using Artificial Neural Networks, J. Agric. Sci. Technol., 11, pp. 355–362, (2009) [Google Scholar]
  4. Jimenos P., Senent-Aparicio J. and Pulido-Velazquez D. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain, Water 2018, DOI: 10.3390/w10020192 (2018) [Google Scholar]
  5. Srinivasulu S. and Jain A. A comparative analysis of training methods for artificial neural network rainfall-runoff models, Applied Soft Computing, 6, pp. 295–306, DOI: 10.1016/j.asoc.2005.02.002 (2006) [CrossRef] [Google Scholar]
  6. Solaimani K. Rainfall-runoff Prediction Based on Artificial Neural Network (A Case Study: Jarahi Watershed), American-Eurasian J. Agric. & Environ. Sci., 5, 6, pp. 856865 [Google Scholar]
  7. Chen S. M., Wang Y. M. and Tsou I. Using artificial neural network approach for modelling rainfall - runoff due to typhoon, J. Earth Syst. Sci., 2, pp. 399–405, (2013) [CrossRef] [Google Scholar]
  8. Chakravarti A., Joshi N. and Panjiar H. Rainfall Runoff Analysis Using Artificial Neural Network, Indian Journal of Science and Technology, 8 (14), DOI: 10.17485/ijst/2015/v8i14/54370, (2019) [Google Scholar]
  9. Mahabir C., Hicks F. E., and Fayek A. R. Application of fuzzy logic to forecast seasonal runoff, Hydrol. Process., 17 (18), pp. 3749–3762, DOI: 10.1002/hyp.1359, (2003) [Google Scholar]
  10. Tayfur G. and Singh V. P. ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff, J. Hydraul. Eng., 132 (12), pp. 1321–1330, (2006) [Google Scholar]
  11. Sen Z. and Altunkaynak A. A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrol. Process. 20 (9), pp. 1993–2009, DOI: 10.1002/hyp.5992. (2006) [Google Scholar]
  12. Lohani A. K., Goel N. K., and Bhatia K. K. S. Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall-runoff modelling under different input domains, Hydrol. Process., 25 (2), pp. 175–193, DOI: 10.1002/hyp.7831. (2011) [Google Scholar]
  13. Wang K. H. and Altunkaynak A. Comparative Case Study of Rainfall-Runoff Modeling between SWMM and Fuzzy Logic Approach. J. Hydrol. Eng., 17 (2), pp. 283–291, DOI: 10.1061/(asce)he.1943-5584.0000419. (2012) [Google Scholar]
  14. Issa M. The relationship between river flow and precipitation in the Orontes Basin, Damascus University Journal, 31 (2), (2015) [Google Scholar]
  15. Hamdan Y., Layos E. and Mohammed I. Identify indicators of climate change through the analysis of the amount of rain on upper basin for Orontes River, Al-Baath University Journal, 39 (43), (2017) [Google Scholar]
  16. Ghahreman N. and Sameti M. Comparison of M5 Model Tree and Artificial Neural Network for Estimating Potential Evapotranspiration in Semi-arid Climates, DESERT, 1, pp. 75–81, (2014) [Google Scholar]
  17. Kumar M., Raghuwanshi N. S., Singh R., Wallender W. W., and Pruitt W. O. Estimating Evapotranspiration using Artificial Neural Network, J. Irrig. Drain Eng., 128, pp. 224–233, (2002) [CrossRef] [Google Scholar]
  18. Kazeminezhad M. H. and Mousavi S. G. Application of fuzzy inference system in the prediction of wave parameters, Ocean Engineering, 32, pp. 1709–1725, DOI: 10.1016/j.oceaneng.2005.02.001. (2005) [Google Scholar]
  19. Al Shalawi S. K. H. Comparison of Artificial Neural Network and Fuzzy Logic System applications for estimating pan-evaporation for Mosul region, Kufa Magazine for Mathematics and Computers, 1 (3), pp. 23–32, (2011) [Google Scholar]
  20. Razavi T. and Province K. Estimating of Reference Evapotranspiration by Using Artificial Neural Networks, International Conference on Transport, Environment and Civil Engineering (ICTECE’2012) August, Kuala Lumpur (Malaysia), pp. 80–84. (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.