Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 02063
Number of page(s) 9
Section Road Construction, Building Structures and Materials
DOI https://doi.org/10.1051/e3sconf/202126402063
Published online 02 June 2021
  1. Tushinsky L.I., Plokhov A.V., Tokarev A.O. Methods of materials research, Moscow, Mir, p. 3842004. [Google Scholar]
  2. Semenova I.V., Khoroshilov A.V., Florinovich G.M. Corrosion and corrosion protection, Moscow, p. 376, 2006. [Google Scholar]
  3. Goncharov A.B., Tulinov A.B., Odintsov L.G. Installation for grinding. Patent No. 2385795, Bul. No. 10, (2010) [Google Scholar]
  4. Ostrovsky M.S. Fretting as a cause of reduced reliability of mining machines, Mining equipment and electromechanics, No. 9, pp. 18–23, (2011) [Google Scholar]
  5. Boyko P.F. Repair restoration of the accuracy of the cones of the crushers, Mining information and analytical bulletin (scientific and technical journal), S5, pp. 12–15, 2015 [Google Scholar]
  6. Boyko P.F. Restoration of the working capacity of large-sized shafts of crushing units -Mining information and analytical bulletin (scientific and technical journal), No. 2, pp. 377–378 (2009) [Google Scholar]
  7. Verzhansky A.P., Ostrovsky M.S., Mnatskanyan V.U. Modern technologies of maintenance and repair of mining machines and equipment, Mining information and analytical bulletin (scientific and technical journal), No. 1. pp. 422–449, (2014) [Google Scholar]
  8. Mnatskanyan V.U., Zinovieva I.I. Modern methods of restoring parts of mining equipment, Mining information and analytical bulletin (scientific and technical journal), No. 4-6, pp. 66–68, (2011) [Google Scholar]
  9. Tulinov A.B., Ivanov V.A., Goncharov A.B. Progressive technologies and materials for the restoration of mining equipment, Collection of scientific papers of the seminar “Modern technologies in mining engineering”, p. 445, Moscow, (2012) [Google Scholar]
  10. Blazy, P. Vibroinertial comminution principles and performance, Int. J. of Mineral Processing. No. 41. pp. 33–51, (2010) [Google Scholar]
  11. Petrini Poli. Quelques elements de technologie dans les appareils de concassage-broyage et criblage, No. 469, p. 30–36, (2011) [Google Scholar]
  12. Iridin G.R. Fracture Mechanics, Instructural Mechanics, Proc.Ist Symposium on Naval Structure Mechanics, pp.557–591, (1990) [Google Scholar]
  13. Wells A.A. Application of Fracture mechanics at and beyond general yielding. British Welding Journal, 10(11), pp.563–570, (1993) [Google Scholar]
  14. Eloranta J., Influence of Crushing Process Variables on the Product Quality of Crushed Rock. Tampere University of Technology, (1995) [Google Scholar]
  15. Evertsson C.M. Modelling of flow in cone crushers, Minerals Engineering, 12 (12), pp. 1479–1499, (1999) [Google Scholar]
  16. Evertsson C.M., Cone Crusher Performance, In Dept. of Machine and Vehicle Design. Chalmers University of Technology, Sweden, (2000) [Google Scholar]
  17. Whiten W.J., The Simulation of Crushing Plants with Models Developed using Multiple Spline Regression. J. SAIMM, 1972. 072(10) p. 257–264. [Google Scholar]
  18. Evertsson C.M., Modelling of flow in cone crushers. Minerals Engineering, 12(12): pp. 1479–1499(1999) [Google Scholar]
  19. Eloranta J., Influence of Crushing Process Variables on the Product Quality of Crushed Rock, 1995, Tampere University of Technology: Tampere. [Google Scholar]
  20. Liu, H.Y., S.Q. Kou, and P.A. Lindqvist, Numerical studies on the inter-particle breakage of a confined particle assembly in rock crushing. Mechanics of Materials, 37(9), pp. 935–9542005. [CrossRef] [Google Scholar]
  21. Evertsson C.M., Cone Crusher Performance, in Dep. of Machine and Vehicle Design Chalmers University of Technology, Göteborg, 2000 [Google Scholar]
  22. Couroye, C., Z. Ning and M. Ghadiri, Distin ct element analysis of bulk crushing: effect of particle properties and loading rate. Powder Technology, 109(1-3), pp. 241–254, (2000) [Google Scholar]
  23. Liu J. and Schönert K. Modelling of interparticle breakage. International Journal of Mineral Processing, pp. 44–45, pp. 101–115, (1996) [Google Scholar]
  24. Bengtsson M. Quality-Driven Production of Aggregates in Crushing Plants, in Dep. Product and production Development, Chalmers University of Technology: Gothenburg, Sweden, (2009) [Google Scholar]
  25. Potyondy D.O. and P.A. Cundall A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (8), pp. 329–1364, (2004) [Google Scholar]
  26. Hulthén, E. and C.M. Evertsson, Algorithm for dynamic cone crusher control. Minerals Engineering, 22(3), pp. 296–303, 2009. [Google Scholar]
  27. Hulthén E., Real-Time Optimization of Cone Crushers, in Dep. Product and Production Development, Chalmers University of Technology, Göteborg (2010) [Google Scholar]
  28. Khanal, M., W. Schubert, and J. Tomas, Discrete element method simulation of bed Tcomminution. Minerals Engineering, 20 (2), pp. 179–187, (2007) [Google Scholar]
  29. Quist J.C.E., Evertsson C.M. Application of discrete element method for simulating feeding conditions and size reduction in cone crushers. In XXV INTERNATIONAL MINERAL PROCESSING CONGRESS. Brisbane, QLD, Australia, (2010) [Google Scholar]
  30. Schubert W., Jeschke H. DEM-simulation of the Breakage Process in an Impact Crusher. New Orders of the Comminution 4, (2005) [Google Scholar]
  31. Quist, J.C.E. Device for calibration of DEM contact model parameters. In EDEM Conference 11'. Edinburgh, (2011) [Google Scholar]
  32. Lichter J., New developments in cone crusher performance optimization. Minerals Engineering, 22 (7-8), pp. 613–617, 2009. [Google Scholar]
  33. Mindlin R.D., Complience of elastic bodies in contact. Journal of Applied Mechanics, 16, pp. 259–268, (1949) [Google Scholar]
  34. Quist J.C.E., Evertsson C.M., Simulating Capacity and Breakage in Cone Crushers Using DEM, in Comminution 10 2010: Capetown, South Africa, (2010) [Google Scholar]
  35. Schönert K., The influence of particle bed configurations and confinements on particle breakage. International Journal of Mineral Processing, pp. 44–45, (1996) [Google Scholar]
  36. Delaney G.W., Morrison R.D., Sinnott M.D., Cummins S., Cleary P.W., DEM modelling of non-spherical particle breakage and flow in an industrial scale cone crusher. Minerals Engineering, 74, pp. 112–122, (2015) [Google Scholar]
  37. Tavares, L. M., Breakage of Single Particles: Quasi-Static, in Handbook of Powder Technology, M.G. Agba D. Salman and J.H. Michael, Editors. Elsevier Science B.V. p. 3–68. (2007) [Google Scholar]
  38. Khankelov T., Askarhodzhaev T., Mukhamedova N. Determination of key parametres of devise for sorting municipal solid waste. Journal of Critical Reviews, 7 (4), pp. 27–28, (2020) [Google Scholar]
  39. Khankelov T., Tursunov, S., Maksudov, Z. Domestic Solid Waste Crusher. International Journal of Psychological Rehabilation, 24 (07), pp. 8090–8091, (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.