Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 04045
Number of page(s) 7
Section Mechanization, Electrification of Agriculture and Renewable Energy Sources
DOI https://doi.org/10.1051/e3sconf/202126404045
Published online 02 June 2021
  1. Chao-Lung, Chiang: Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. In IEEE Transactions on Power Systems, Vol. 20, no. 4, pp. 1690–1699, Nov. doi: 10.1109/TPWRS.2005.857924. (2005). [Google Scholar]
  2. Y. H. Song, Q. Y. Xuan: (1998) Combined Heat and Power Economic Dispatch Using Genetic algorithm Based Penalty Function Method. Electric Machines & Power Systems, 26:4, 363–372 doi: 10.1080/07313569808955828. (1998). [Google Scholar]
  3. C. Li, F. de Bosio, F. Chen, S. K. Chaudhary, J. C. Vasquez and J. M. Guerrero: Economic Dispatch for Operating Cost Minimization Under Real-Time Pricing in Droop-Controlled DC Microgrid. In: IEEE Journal of Emerging and Selected Topics in Power Electronics. Vol. 5, no. 1, pp. 587–595, doi: 10.1109/JESTPE.2016.2634026. March (2017). [Google Scholar]
  4. Tarek, Bouktir, Linda, Slimani, M. Belkacemi: A Genetic Algorithm for Solving the Optimal Power Flow Problem. Leonardo Journal of Science. Issue 4, January-June (2004). [Google Scholar]
  5. T. M. Mohan, T. Nireekshana: A Genetic Algorithm for Solving Optimal Power Flow Problem. In: 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1438–1440. Coimbatore, India. doi: 10.1109/ICECA.2019.8822090. (2019). [Google Scholar]
  6. Bijay, Baran Pal, Papun, Biswasb, Anirban Mukhopadhyay: GA Based FGP Approach for Optimal Reactive Power Dispatch. In: International Conference on Computational Intelligence: Modeling Techniques and Applications (CIMTA) 2013. Procedia Technology 10 464–473. (2013). [Google Scholar]
  7. Biswas, Papun: GA Based FGP Model for Power Loss Minimization and Voltage Stability Improvement in Electrical Power Systems. International Journal of Engineering, Science and Mathematics. 7(2). 192–201. (2018). [Google Scholar]
  8. SatyendraSingh, K.S. Verma: Optimal Power Flow using Genetic Algorithm andParticle Swarm Optimization. IOSR Journal of Engineering (IOSRJEN). 2(1). 046–049 (2012). [Google Scholar]
  9. J. Yuryevich, K. P. Wong: Evolutionary Programming Based Optimal Power Flow Algorithm. IEEE Transaction on power Systems. 14(4), (1999). [Google Scholar]
  10. L.L. Lai, J. T. Ma, R. Yokoma, M. Zhao: Improved genetic algorithms for optimal power flow under both normal and contingent operation states. Electrical Power & Energy System. 19(5), 287–292 (1997). [Google Scholar]
  11. J.C. Carpentier: Optimal Power Flows: Uses, Methods and Developments. In: IFAC Proceedings Volumes. 18(7), pp. 11–21 https://doi.org/10.1016/S1474-6670(17)60410-5. (1985). [Google Scholar]
  12. Automation of dispatch control in electric power systems/ Ed. by Yu.N. Rudenko and V.A. Semenov. Publishing House MPEI, Moscow (In Russian). (2000). [Google Scholar]
  13. Lin, CE, Chen, ST, and Huang, CL.: A direct Newton-Raphson economic dispatch. United States: N. p., Web. doi: 10.1109/59.207328. (1992). [Google Scholar]
  14. Nasirov, T.Kh., Gayibov, T.Sh.: Theoretical foundations of optimization of power system modes. Fan va texnologiya, Tashkent (In Russian). (2014). [Google Scholar]
  15. Tulkin, Gayibov, Bekzod, Pulatov: Optimization of Short-term Modes of Hydrothermal Power System. E3S Web of Conference 209, 07014 ENERGY-21. https:/doi.org/10/1051\e3sconf/202020907014. (2020). [Google Scholar]
  16. Tulkin, Gayibov, Sherxon, Latipov, Bakhodir, Uzakov: Power System Mode optimization by piecewise-linear approximation of energy characteristics of Power Plants. E3S Web of Conference 139, 01086 RSES 2019. https://doi.org/10.1051/e3sconf/201913901086. (2019). [CrossRef] [Google Scholar]
  17. Tulkin, Gayibov, Bekzod, Pulatov, Sherxon, Latipov, Gulnaz, Turmanova: Power System Optimization in Terms of Uncertainty of Initial Information. E3S Web of Conference 139, 01031. RSES 2019. https://doi.org/10.1051/e3sconf/201913901031. (2019). [Google Scholar]
  18. T. Gayibov, Sh. Latipov, D. Abdurashidov, B. Pulatov, A. Davirov: Algorithm for power systems mode optimization taking into account the frequency change in terms of probablistic nature of initial information. IOP Conf. Series: Materials Science and Engineering, 883, 012185 doi: 10.1088/1757-899X/883/1/012185. (2020). [CrossRef] [Google Scholar]
  19. Tulkin, Gayibov. Algorithm for optimization of power system short-term mode in conditions of partial uncertainty of initial information taking into account the frequency change. E3S Web of Conference 216, 01100 RSES 2020. https:/doi.org/10/1051\e3sconf/202021601100. (2020). [Google Scholar]
  20. Valdma M., Keel M., Liik O and Tammoja, H.: Method of Minimax optimization of Power System Operation. In: Bologna Italy Proccedings of IEEE Bologna Power Tech. pp. 23–26, (2003). [Google Scholar]
  21. Valdma M., Keel M and Liik, O.: Optimization of active power generation in electric power system under incomplete information. In: Proccedings of Tenth Power Systems Computation Conference. pp. 1171–1176, (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.