Open Access
E3S Web Conf.
Volume 266, 2021
Topical Issues of Rational Use of Natural Resources 2021
Article Number 02002
Number of page(s) 15
Section Technologies of Complex Processing of Mineral Raw Materials
Published online 04 June 2021
  1. X. Du, T.E. Graedel,. Global In-Use Stocks of the Rare Earth Elements: A First Estimate. Environmental Science & Technology 45(9). 4096–4101 (2011) [Google Scholar]
  2. A.A. Gasanov, A.V. Naumov, O.V. Yurasova, I.M. Petrov, T.E. Litvinova, Certain tendencies in the Rare-Earth-Element world market and prospects of Russia. Russian Journal of Non-Ferrous Metals 59, 502–511 (2018) [Google Scholar]
  3. World Mining Data, Minerals Production, 35: 51 (2020) [Google Scholar]
  4. U.S. Geological Survey, Mineral commodity summaries, 132–133, (2020) [Google Scholar]
  5. M. Gergoric, C. Ekberg, B.M. Steenari, T. Retegan. T. Separation of Heavy Rare-Earth Elements from Light Rare-Earth Elements Via Solvent Extraction from a Neodymium Magnet Leachate and the Effects of Diluents. Journal of Sustainable Metallurgy, 3, : 601–610 (2017) [Google Scholar]
  6. J.E. Quinn, K.H. Soldenhoff, G.W. Stevens, Solvent extraction of rare earth elements using a bifunctional ionic liquid. Part 2: Separation of rare earth elements. Hydrometallurgy , 169, 621–628 (2017) [Google Scholar]
  7. S. Yulusov, T.Y. Surkova, L.U. Amanzholova, M.B. Barmenshinova, On sorption of the rare-earth elements. Journal of Chemical Technology and Metallurgy, 53(1), 79–82 (2018) [Google Scholar]
  8. H. Liu, O. Pourret, H. Guo, J. Bonhoure, Rare earth elements sorption to iron oxyhy droxide: Model development and application to groundwater. Applied Geochemistry, 87, 158–166 (2017) [Google Scholar]
  9. S.M. Xaba, M. Nete, W. Purcell, Concentration of rare earth elements from monazite by selective precipitation. IOP Conference Series Materials Science and Engineering, 430(1), 012006 (2018) [Google Scholar]
  10. H. Huang, X. Xiao, L. Yang, B. Yan, Removal of ammonia nitrogen from washing wastewater resulting from the process of rare-earth elements precipitation by the formation of struvite. Desalination and Water Treatment, 24(1-3), 85–92 (2010) [Google Scholar]
  11. S. Maes, W.Q. Zhuang, K. Rabaey, L. Alvarez-Cohen, T. Hennebel, Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite. Environmental Science & Technology 51(3): 1654–1661 (2017). [CrossRef] [PubMed] [Google Scholar]
  12. D. Li, A review on yttrium solvent extraction chemistry and separation process. Journal of Rare Earths 35(2): 107–119 (2017). [Google Scholar]
  13. F. Xie, T.A. Zhang, D.B. Dreisinger, F.M. Doyle, A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering 56: 10–28 (2014). [Google Scholar]
  14. I. Hammas-Nasri, K. Horchani-Naifer, M. Ferid, D. Barca, Rare-earths concentration from phosphogypsum waste by two-step leaching method. International Journal of Mineral Processing 149: 78–83 (2016). [Google Scholar]
  15. D. Lutskiy, T. Litvinova, A. Ignatovich, I. Fialkovskiy, Complex processing of phosphogypsum-A way of recycling dumps with reception of commodity production of wide application. Journal of Ecological Engineering 19(2): 223–227 (2018). [Google Scholar]
  16. Kurysheva, V.V. Ivanova, E.V., Prohorova, P.E. 2016. Extractant for rare earth metals. Chimica Techno Acta 3(2): 97–120. [Google Scholar]
  17. S.V. Demin, V.I. Zhilov, A.Y. Tsivadze, V.V. Yakshin, O.N. Vilkova, N.A. Tsarenko, Extraction of rare-earth elements by alkylated dibenzo-18-crown-6 and dicyclohex-ano-18-crown-6 from acid solutions. Russian Journal of Inorganic Chemistry 51(10): 1678–1681 (2016). [Google Scholar]
  18. M. Boltoeva, C. Gaillard, S. Georg, V.K. Karandashev, A.N. Turanov, Speciation of uranium (VI) extracted from acidic nitrate media by TODGA into molecular and ionic solvents. Separation and Purification Technology 203: 11–19 (2018). [Google Scholar]
  19. L. Qiu, Y. Pan, W. Zhang, A. Gong. Application of a functionalized ionic liquid extractant tributylmethylammonium dibutyldiglycolamate ([A336][BDGA]) in light rare earth extraction and separation. PLoS ONE 13(8): 1–13 (2018). [Google Scholar]
  20. D. Lutskiy, O. Cheremisina, M. Ponomareva, A. Ignatovich, Determination of the mutual entrainment of the extractant and the aqueous phase in the extraction of rare-earth elements from the technological phosphoric acid solution. Journal of Physics: Conference Series 1399: 1–5 (2019). [Google Scholar]
  21. O.V. Cheremisina, E. Cheremisina, M.A. Ponomareva, A.T. Fedorov, Sorption of rare earth coordination compounds. Journal of Mining Institute 244: 474–481 (2020). [Google Scholar]
  22. S. Dash, S. Mohanty, ONIOM Study for Selectivity of Extractants for Extraction of Rare Earth Metals. Chemical Engineering & Technology 41(9): 1697–1705 (2018). [Google Scholar]
  23. R.R. Bontha, R.K. Jyothi, Rare earths extraction, separation, and recovery from phosphoric acid media. Solvent Extraction and Ion Exchange 34(3): 226–240 (2016). [Google Scholar]
  24. L. Wang, Z. Long, X. Huang, Y. Yu. Recovery of rare earths from wet-process phosphoric acid. Hydrometallurgy 101(1): 41–47 (2010). [CrossRef] [Google Scholar]
  25. N.N. Hidayah, S.Z. Abidin, Extraction of light, medium and heavy rare-earth elements using synergist extractants developed from ionic liquid and conventional extractants. Comptes Rendus Chimie 22(11-12): 728–744 (2019). [Google Scholar]
  26. N.A. Ismail, A. Hisyam, M.A. Aziz, M.Y. Yunus, Selection of Extractant in Rare Earth Solvent Extraction System: A Review. International Journal of Recent Technology and Engineering (IJRTE) 8(1): 728–743 (2019). [Google Scholar]
  27. K.S. Dhruva, A. Mallavarapu, K.Y. Kartikey, K.K. Manoj, V. Ravishankar, S. Harvinderpal, Simultaneous recovery of yttrium and uranium using D2EHPA-TBP and DNPPA-TOPO from phosphoric acid. Desalination and Water Treatment 38(1): 292300 (2012) [Google Scholar]
  28. O.V. Cheremisina, V.V. Sergeev, A.T. Fedorov, D.A. Alferova, E.S. Lukyantseva, Study of iron stripping from DEHPA solutions during the process of rare earth metals extraction from phosphoric acid. ARPN Journal of Engineering and Applied Sciences 14(8): 1591–1595 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.