Open Access
Issue
E3S Web Conf.
Volume 266, 2021
Topical Issues of Rational Use of Natural Resources 2021
Article Number 08001
Number of page(s) 14
Section Sustainable Development of Regions and Environmental Safety
DOI https://doi.org/10.1051/e3sconf/202126608001
Published online 04 June 2021
  1. S. Kçdzior, M. Dreger, Methane occurrence, emissions and hazards in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology, 211, 103226. (2019). [Google Scholar]
  2. L. Shi, J. Wang, G. Zhang, X. Cheng, X. Zhao, A risk assessment method to quantitatively investigate the methane explosion in underground coal mine, Process Safety and Environmental Protection, 107, 317–333 (2017). [Google Scholar]
  3. V.B. Soloviov, R.D. Magomet, The ways of safety improvement during the outburst-prone and gas bearing coal seams development, Journal of Industrial Pollution Control 33(1), 1042–1047. 2017. [Google Scholar]
  4. J. Zawadzki, P. Fabijanczyk, H. Badura, A risk assessment method to quantitatively investigate the methane explosion in underground coal mine. International Journal of Coal Geology, 118, 33–44 (2013). [Google Scholar]
  5. C.Ö. Karacan, W.P. Diamond, Forecasting gas emission for coal mine safety applications. In: Kissel, F. (eD.): Handbook for Methane Control in Mining. Information Circular, vol. 9486, National Institute for Occupational Safety and Health. Pittsburgh, PA., 113–126 (2006). [Google Scholar]
  6. Regulation Rozporzqdzenie Ministra Energii z dnia 23 listopada 2016 r. w sprawie szczególowych wymagan dotyczqcych prowadzenia ruchu podziemnych zakladach górniczych. DZ.U. z dnia 9 czerwca 2017 r. poz.1118. (2017) [Google Scholar]
  7. E. Krause, K. Eukowicz Zasady prowadzenia scian w warunkach zagrozenia metanowego. Technical Guide. (GIG, KD Barbara Publishing House. Katowice -Mikolów, 2004). [Google Scholar]
  8. H. Badura, Analysis of some factors influence on methanebearing capacity of longwall D-2 region in seam 409/4 in colliery “R”. Przeglqd Górniczy, 4 (2007). [Google Scholar]
  9. J. Krawczyk, J. Janus, The Numerical Simulation of a Sudden Inflow of Methane into the End Segment of a Longwall with Y-Type Ventilation System. Archives of Mining Sciences, 59(4), 941–957 (2014). [Google Scholar]
  10. E. Krause, J. Skiba Formation of methane hazard in longwall coal mines with increasingly higher production capacity. International Journal of Mining Science and Technology, 24(3), 403–407 (2014). [Google Scholar]
  11. R. Krog, S. Schatzel, F. Garcia, J. Marshall, Predicting methane emissions from longer longwall faces by analysis of emission contributors. Proceedings of the 11th U.S./North American Mine Ventilation (2006). [Google Scholar]
  12. S.A. Nikolaevich, T.S. Vadimovich, G.E. Vladimirovich, Complex technology of underground coal gasification and coal-based methane recovery using geodynamic zoning. 18th International Coal Preparation (2016). [Google Scholar]
  13. J. Sulkowski, Wspieranie przez naukç zwalczania požarów i wybuchów w kopalniach wçgla kamiennego. Silesian University of Technology Publishing House. Górnictwoi Geologia, Gliwice, 5, 3 (2010). [Google Scholar]
  14. N. Szlqzak, M. Borowski, L. Kloc, D. Obracaj, Inequality of air heating in downcast shaft and its effect on the disturbance of flow directions, Górnictwo, AGH Publishing House, Kraków 24, 4 (2000). [Google Scholar]
  15. S. Trenczek, Study of influence of tremors on combined hazards. Longwall mining operations in cooccurrence of natural hazards. A case study. Journal of Sustainable Mining, 15(1), 36–47 (2016). [Google Scholar]
  16. H. Badura, Short-term prediction methods for methane concentrations at the outlets from caving longwall areas at coal mines. Monograph. (Silesian University of Technology Press, Gliwice, 2013). [Google Scholar]
  17. C.Ö. Karacan Modeling and prediction of ventilation methane emission of U.S. long wall mines using supervised artificial neural networks. International Journal of Coal Geology, 73(3-4), 371–387 (2008). [Google Scholar]
  18. C.Ö. Karacan Forecasting gob gas venthole production using intelligent computing methods for optimum methane control in longwall coal mines. International Journal of Coal Geology, 79(4), 131–144 (2009). [Google Scholar]
  19. L.W. Lunarzewski, Gas emission prediction and recovery in underground coal mines. International Journal of Coal Geology, 35(1-4), 117–145 (1998). [Google Scholar]
  20. D. Mishra, D. Panigrahi, P. Kumar, Computational investigation on effects of geomining parameters on layering and dispersion of methane in underground coal mines -a case study of Moonidih Colliery, Journal of Natural Gas Science and Engineering, 53, 110–124 (2018). [Google Scholar]
  21. K. Noack, Control of gas emissions in underground coal mines. International Journal of Coal Geology, 35 (1-4), 57–82 (1998). [Google Scholar]
  22. A.P. Niewiadomski, Short-term prediction method selection criteria in order of proper selection of methane prevention measures in longwalls. (PhD dissertation, 2019). [Google Scholar]
  23. E. Krause, K. Lukowicz, Dynamiczna prognoza melanowosci bezwzglednej scian. Technical Guide (GIG, KD Barbara Publishing House. Katowice - Mikolów, 2000). [Google Scholar]
  24. A.P. Niewiadomski, H. Badura, Evaluation of a one-day average methane concentrations forecast at the outlet from the longwall ventilation region as tool of supporting selection of methane prevention measures, Topical Issues of Rational Use of Natural Resources 2019, Volume 1: Proceedings of the XV International ForumContest of Students and Young Researchers under the auspices of UNESCO, (2019) [Google Scholar]
  25. J. Dong, Y. Cheng, T. Chang, J. Zhang, S. Guo, Coal mine methane control cost and full cost: The case of the Luling Coal Mine, Huaibei coalfield, China. Journal of Natural Gas Science and Engineering, 26, 290–302 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.