Open Access
Issue
E3S Web Conf.
Volume 266, 2021
Topical Issues of Rational Use of Natural Resources 2021
Article Number 08006
Number of page(s) 13
Section Sustainable Development of Regions and Environmental Safety
DOI https://doi.org/10.1051/e3sconf/202126608006
Published online 04 June 2021
  1. F. Günther, P.P. Overduin, A.V. Sandakov, G. Grosse, M.N. Grigoriev, Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region. Biogeosciences, 10: 4297–4318 (2013). [Google Scholar]
  2. N. Shakhova, I. Semiletov, O. Gustafsson, V. Sergienko, L. Lobkovsky, O. Dudarev, V. Tumskoy, M. Grigoriev, A. Mazurov, A. Salyuk, R. Ananiev, A. Koshurnikov, D. Kosmach, A. Charkin, N. Dmitrevsky, V. Karnaukh, A. Gunar, A. Meluzov, D. Chernykh, Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature Communications, 8, 15872 (2017). [Google Scholar]
  3. F.S. Chapin, M. Torn, M. Tateno, Principles of Ecosystem Sustainability. American Naturalists, 148(6): 1016–1037 (1996). [Google Scholar]
  4. H. Meltofte, Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity. Conservation of Arctic Flora and Fauna (Akureyri: Iceland, 2013). [Google Scholar]
  5. I. Semiletov, I. Pipko, Ö. Gustafsson, L.G. Anderson, V. Sergienko, S. Pugach, O. Dudarev, A. Charkin, A. Gukov, L. Bröder, A. Andersson, E. Spivak, N. Shakhova, Acidification of East Siberian Arctic Shelf waters through addition of freshwater andterrestrial carbon. Nature Geoscience, 9: 361–365 (2016). [Google Scholar]
  6. D.W. Capelle, A. Kuzyk Zou Zou, T. Papakyriakou, C. Guéguen, L.A. Miller, R.W. Macdonald, Effect of terrestrial organic matter on ocean acidification and CO2 flux in an Arctic shelf sea, Progress in Oceanography, 185: 102319 (2020). [Google Scholar]
  7. J.E. Vonk, L. Sánchez-García, B.E. Van Dongen, V. Alling, D. Kosmach, A. Charkin, I.P. Semiletov, O.V. Dudarev, N. Shakhova, P. Roos, T.I. Eglinton, A. Andersson, Ö. Gustafsson, Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489(7414): 137–140 (2012). [Google Scholar]
  8. L. Bröder, T. Tesi, J. A. Salvadó, I. Semiletov, O. Dudarev, Ö. Gustafsson, Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior, Biogeosciences, 13: 5003–5019 (2017). [Google Scholar]
  9. L. Bröder, A. Andersson, T. Tesi, I. Semiletov, Ö. Gustafsson, Quantifying degradative loss of terrigenous organic carbon in surface sediments across the Laptev and East Siberian Sea. Global Biogeochemical Cycles, 33: 85–99 (2019). [Google Scholar]
  10. E.S. Karlsson, A. Charkin, O. Dudarev, I. Semiletov, J.E. Vonk, L. Sánchez-García, A. Andersson, Ö. Gustafsson, Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea, Biogeosciences, 8: 1865–1879 (2011). [Google Scholar]
  11. J.A. Salvadó, T. Tesi, M. Sundbom, E. Karlsson, M. Krusâ, I.P. Semiletov, E. Panova, Ö. Gustafsson, Contrasting composition of terrigenous organic matter in the dissolved, particulate and sedimentary organic carbon pools on the outer East Siberian Arctic Shelf. Biogeosciences, 13: 6121–6138 (2016). [Google Scholar]
  12. S.H. Ahn, K.W. Kim, J. Naeun, J.J. Kang, J.H. Lee, T.E. Whitledge, D.A. Stockwell, H.W. Lee, S.H. Lee, Fluvial influence on the biochemical composition of particulate organic matter in the Laptev and Western East Siberian seas during 2015. Marine Environmental Research, 155: 104873 (2020). [Google Scholar]
  13. N. Shakhova, I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, O. Gustafsson, Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327: 1246–1250 (2010). [Google Scholar]
  14. N.E. Shakhova, I.P. Semiletov, I. Leifer, V. Sergienko, A. Salyuk, D. Kosmach, D. Chernykh, C. Stubbs, D. Nicolsky, V. Tumskoy, Ö. Gustafsson, Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience, 7(1): 64–70 (2014). [Google Scholar]
  15. N.E. Shakhova, I.P. Semiletov, V. Sergienko, L. Lobkovsky, V. Yusupov, A. Salyuk, A. Salomatin, D. Chernykh, D. Kosmach, G. Panteleev, D. Nicolsky, V. Samarkin, S. Joye, A. Charkin, O. V. A. Dudarev, Meluzov, O. Gustafsson, The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, 2052 (2015). [Google Scholar]
  16. L. Sánchez-García, V. Alling, S. Pugach, J. Vonk, B. Van Dongen, C. Humborg, O. Dudarev, I. Semiletov, Ö. Gustafsson, Inventories and behavior of particulate organic carbon in the Laptev and East Siberian seas. Global Biogeochem 25: GB2022 (2011). [Google Scholar]
  17. R. Stein, and R.W. Macdonald, The organic carbon cycle in the Arctic Ocean. (Springer Verlag, 2004). [Google Scholar]
  18. V. Rachold, M.N. Grigoriev, F.E. Are, S. Solomon, E. Reimnitz, H. Kassens, M. Antonow, Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas. International Journal of Earth Sciences, 89: 450–459 (2000). [Google Scholar]
  19. R.M. Holmes, J.W. McClelland, B.J. Peterson, I.A. Shiklomanov, A.I. Shiklomanov, A.V. Zhulidov, V.V. Gordeev, N.N. Bobrovitskaya, A circumpolar perspective on fluvial sediment flux to the Arctic ocean. Global Biogeochemical Cycles, 16(4): 14–45. (2002). [Google Scholar]
  20. M.B. Skvortsov, A.D. Dzyublo, O.V. Grushevskaya, M.N. Kravchenko, I.V. Uvarova, Laptev, Sea shelf: qualitative and quantitative assessment of hydrocarbon potential. Geologiya nefti i gaza, 1:5–19 (2020). [Google Scholar]
  21. I.D. Polyakova, G.C. Borukaev, Structure and petroleum potential of the Laptev Sea region. Lithology and Mineral Resources, 52: 278–294 (2017). [Google Scholar]
  22. K. Trabelsi, J. Espitalié, A.-Y. Huc, Characterization of Extra Heavy Oils and Tar Deposits by modified Pyrolysis Methods. Proceedings of the “Heavy Oil Technologies in a Wider Europe” Thermie EC Symposium, Berlin: 30–40 (1994). [Google Scholar]
  23. A.A. Hare, Z.Z.A. Kuzyk, R.W. Macdonald, H. Sanei, D. Barber, G.A. Stern, F. Wang Characterization of sedimentary organic matter in recent marine sediments from Hudson Bay, Canada, by Rock-Eval pyrolysis. Organic Geochemistry, 68: 52–60. (2014). [Google Scholar]
  24. F. Behar, B. Beaumont, B. De, H.L. Penteado, Rock-Eval 6 technology: performances and developments. Oil & Gas Science and Technology, Revue IFP 56: 111–134 (2001). [Google Scholar]
  25. V.N. Melenevskii, G.A. Leonova, A.S. Konyshev, The organic matter of the recent sediments of lake Beloe. Geology and Geophysics, 52(6): 751–762 (2011). [Google Scholar]
  26. V.N. Melenevskii, S.V. Saraev, E.A. Kostyreva, V.A. Kashirtsev, Diagenetic transformation of organic matter of the Holocene Black sea sediments according to pyrolysis data. Geology and Geophysics, 58(2): 273–289 (2017). [Google Scholar]
  27. E.V. Gershelis, R.S. Kashapov, A.S. Ruban, I.A. Oberemok, A.A. Leonov, D.V. Chernykh, O.V. Dudarev, I.P. Semiletov, Identifying sources of organic carbon in surface sediments of Laptev sea shelf using a Rock-Eval approach. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 331(8): 189–198 (2020). [Google Scholar]
  28. J.R. Disnar, B. Guillet, D. Keravis, C. Di-Giovanni, D. Sebag, Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Organic Geochemistry 34: 327–343 (2003). [Google Scholar]
  29. F.P. Shepard Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology 24(3): 151–158 (1954). [Google Scholar]
  30. E. Gershelis, I. Goncharov, O. Dudarev, A. Ruban, I. Semiletov, Characterization of organic matter in bottom sediments of Ivashkina Lagoon, Laptev Sea. E3S Web of Conferences, 98: 06006 (2019). [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.