Open Access
Issue
E3S Web Conf.
Volume 267, 2021
7th International Conference on Energy Science and Chemical Engineering (ICESCE 2021)
Article Number 02045
Number of page(s) 4
Section Environmental Chemistry Research and Chemical Preparation Process
DOI https://doi.org/10.1051/e3sconf/202126702045
Published online 04 June 2021
  1. Novoselov K S, Geim AK, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696):666–669. [Google Scholar]
  2. Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11):699–712. [Google Scholar]
  3. Liu H, Neal A T, Zhu Z, et al. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility[J]. Acs Nano, 2014, 8(4):4033–4041. [Google Scholar]
  4. Wallace P R. The Band Theory of Graphite[J]. Physical Review, 1947, 71(9):622–634. [Google Scholar]
  5. Weiss N O, Zhou H, Liao L, et al. Graphene: An Emerging Electronic Material[J]. Advanced Materials, 2012, 24(43):5782–5825. [Google Scholar]
  6. Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9):652–655. [Google Scholar]
  7. Lin Y M, Avouris P. Strong Suppression of Electrical Noise in Bilayer Graphene Nano Devices[J]. Nano Letters, 2008, 8(8):2119–2125. [Google Scholar]
  8. Hong Juree, Lee Sanggeun, Seo Jungmok, et al. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid [J]. ACS applied materials & interfaces, 2015, 7(6):3554–3561. [Google Scholar]
  9. Robinson J T, Perkins F K, Snow E S, et al. Reduced Graphene Oxide Molecular Sensors[J]. Nano Letters, 2008, 8(10):3137–3140. [Google Scholar]
  10. Ghosh R, Midya A, Santra S, et al. Chemically reduced graphene oxide for ammonia detection at room temperature[J]. Acs Applied Materials & Interfaces, 2013, 5(15):7599–7603. [Google Scholar]
  11. Lu G, Ocola L E, Chen J. Reduced graphene oxide for room-temperature gas sensors[J]. Nanotechnology, 2009, 20(44):445502. [Google Scholar]
  12. Syed Muhammad Hafiz, Ritikos R, Whitcher T J, et al. A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide[J]. Sensors and Actuators, B. Chemical, 2014, 193:692-700. [Google Scholar]
  13. Hu N, Wang Y, Chai J, et al. Gas sensor based on p-phenylenediamine reduced graphene oxide[J]. Sensors and Actuators B, 2012, 163(1):107–114. [Google Scholar]
  14. D Zhang, Jiang C, Liu J, et al. Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly[J]. Sensors & Actuators B Chemical, 2017, 247(AUG.):875-882. [Google Scholar]
  15. Choi W, Choudhary N, Han G H, et al. Recent development of two-dimensional transition metal dichalcogenides and their applications[J]. Materials Today, 2017, 20(3):116–130. [Google Scholar]
  16. Ou Jian Zhen, Ge Wanyin, Carey Benjamin, et al. Physisorption-Based Charge Transfer in Two-Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing[J]. ACS nano, 2015, 9(10):10313–10323. [Google Scholar]
  17. Umar A, Akhtar M S, Dar G N, et al. Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes.[J]. Talanta, 2013, 114:183-190. [Google Scholar]
  18. Kim Y H, Phan D T, Ahn S, et al. Two-dimensional SnS2 materials as high-performance NO2 sensors with fast response and high sensitivity[J]. Sensors & Actuators B, 2018, 255:616-621. [Google Scholar]
  19. Xiong Y, Xu W, Ding D, et al. Ultra-sensitive NH3 sensor based on flower-shaped SnS2 nanostructures with sub-ppm detection ability[J]. Journal of Hazardous Materials, 2017, 341:159-167. [Google Scholar]
  20. Zhang B, Liu Y, Liang T, et al. Activating the Basal Plane of Defective SnS2 Nanosheets for NH3 Gas Sensing[J]. ACS Applied Nano Materials, 2020, 3(5): 4642-4653. [Google Scholar]
  21. Di L, Tang Z, Zhang Z. Nanoplates-assembled SnS2 nanoflowers for ultrasensitive ppb-level NO2 detection[J]. Sensors & Actuators B Chemical, 2018, 273:473-479. [Google Scholar]
  22. Cheng M, Wu Z, Liu G, et al. Highly sensitive sensors based on quasi-2D rGO/SnS2 hybrid for rapid detection of NO2 gas[J]. Sensors and Actuators, 2019, B291 (JUL.): 216-225. [Google Scholar]
  23. Shafiei M, Bradford J, Khan H, et al. Low-Working Temperature NO2 Gas Sensors Based on Hybrid Two-Dimensional SnS2-Reduced Graphene Oxide[J]. Applied Surface Science, 2018, 462(DEC.31):330336. [Google Scholar]
  24. Wu J, Wu Z, Ding H, et al. Flexible, 3D SnS2/Reduced Graphene Oxide Heterostructured NO2 Sensor[J]. Sensors and Actuators B Chemical, 2020, 305:127445. [Google Scholar]
  25. Dongzhi Zhang, Zong X, Wu Z. Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility[J]. Sensors and Actuators B: Chemical, 2019, 287(MAY):398-407 [Google Scholar]
  26. Huang Y, Jiao W, Chu Z, et al. High Sensitivity, Humidity-Independent, Flexible NO2 and NH3 Gas Sensors Based on SnS2 Hybrid Functional Graphene Ink[J]. ACS Applied Materials & Interfaces, 2019, 12(1):1–37. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.