Open Access
Issue
E3S Web Conf.
Volume 268, 2021
2020 6th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2020)
Article Number 01071
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202126801071
Published online 11 June 2021
  1. Pajak P., Desilva A., Harrison D. Precision and efficiency of laser assisted jet electrochemical machining. Precis Eng, 2006, 30(3): 288–298. [CrossRef] [Google Scholar]
  2. Pajak P., Desilva A., McGeough J. Modelling the aspects of precision and efficiency in laser-assisted jet electrochemical machining (LAJECM). J Mater Process Tech, 2004, 149(1-3): 512–518. [CrossRef] [Google Scholar]
  3. Desilva A., Pajak P., McGeough J. Thermal effects in laser assisted jet electrochemical machining. CIRP Ann Manuf Technol, 2011, 60(1): 243–246. [CrossRef] [Google Scholar]
  4. Hackert M., Paul R., Martin A. Study on the dynamic generation of the jet shape in Jet Electrochemical Machining. J Mater Process Tech, 2015, 223: 240–251. [CrossRef] [Google Scholar]
  5. Schubert A., Hackert M., Martin A. Generation of Complex Surfaces by Superimposed Multi-dimensional Motion in Electrochemical Machining. Procedia CIRP, 2016, 42: 384–389. [CrossRef] [Google Scholar]
  6. Liu W., Zhang H., Luo Z. Electrochemical micromachining on titanium using the NaCl-containing ethylene glycol electrolyte. J Mater Process Tech, 2018, 255: 784–794. [CrossRef] [Google Scholar]
  7. Yudi W., Zhengyang X., An Z. Electrochemical dissolution behavior of Ti-45Al-2Mn-2Nb+0.8 vol% TiB2 XD alloy in NaCl and NaNO3 solutions. Corros Sci, 2019, 157: 357–369. [CrossRef] [Google Scholar]
  8. Jinxing L., Xiaolong F., Di Z. Jet electrochemical machining of multi-grooves by using tube electrodes in a row. J Mater Process Tech, 2020, 283: 116705. [CrossRef] [Google Scholar]
  9. Qingfeng, Y., Pengyue, W., Zhiqiang, Q. et al. Electrical discharge drilling assisted with bubbles produced by electrochemical reaction. Int J Adv Manuf Technol 109, 919–928 (2020). [CrossRef] [Google Scholar]
  10. Minghao, L., Yong, L., Siying, L. et al. Theoretical and experimental study on micro ultrasonic-assisted electrochemical drilling with high speed electrode. Int J Adv Manuf Technol 107, 815–826 (2020). [CrossRef] [Google Scholar]
  11. Leyva-Bravo, J., Chinas-Sanchez, P., Hernandez-Rodriguez, A. et al. Electrochemical discharge machining modeling through different soft computing approaches. Int J Adv Manuf Technol 106, 3587–3596 (2020). [CrossRef] [Google Scholar]
  12. Asokan, P., Ravi Kumar, R., Jeyapaul, R. et al. Development of multi-objective optimization models for electrochemical machining process. Int J Adv Manuf Technol 39, 55–63 (2008). [CrossRef] [Google Scholar]
  13. Munda, J., Bhattacharyya, B. Investigation into electrochemical micromachining (EMM) through response surface methodology based approach. Int J Adv Manuf Technol 35, 821–832 (2008). [CrossRef] [Google Scholar]
  14. Qingfeng, Y., Pengyue, W., Zhiqiang, Q. et al. Electrical discharge drilling assisted with bubbles produced by electrochemical reaction. Int J Adv Manuf Technol 109, 919–928 (2020). [CrossRef] [Google Scholar]
  15. Minghao, L., Yong, L., Siying, L. et al. Theoretical and experimental study on micro ultrasonic-assisted electrochemical drilling with high speed electrode. Int J Adv Manuf Technol 107, 815–826 (2020). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.