Open Access
Issue
E3S Web Conf.
Volume 268, 2021
2020 6th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2020)
Article Number 01073
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202126801073
Published online 11 June 2021
  1. R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific Publishing Company, Singapore, (2011). [Google Scholar]
  2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, Vol. 207, (2006). [Google Scholar]
  3. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Functions, Gordon and Breach, Yverdon, (1993). [Google Scholar]
  4. S. S. Ray, Fractional Calculus with Applications for Nuclear Reactor Dynamics, CRC Press, Boca Raton, Fla., USA, (2015). [Google Scholar]
  5. K. Oldham, J. Spanier, The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order, 111, Academic Press, New York/London, (1974). [Google Scholar]
  6. R. L. Magin, Fractional calculus in bioengineering, in: 2012 13th International Carpathian Control Conference, ICCC 2012, (2012). [Google Scholar]
  7. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, (2010). [Google Scholar]
  8. A. Oustaloup, LaDérivation Non Entière: Théorie, Synthèse et Applications, Editions Hermès, Paris, (1995). [Google Scholar]
  9. I. Podlubny, Fractional Differential Equations, Academic, San Diego, (1999). [Google Scholar]
  10. K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, (1993). [Google Scholar]
  11. S. Das, Functional Fractional Calculus, 2nd ed. Springer-Verlag, (2011). [Google Scholar]
  12. G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Computers & Mathematics with Applications, Vol. 51, No. 9, (2006), pp.1367–1376. [CrossRef] [MathSciNet] [Google Scholar]
  13. D. Kumar, J. Daiya, Linear fractional non-homogeneous differential equations with Jumarie fractional derivative, Journal of Chemical, Biological and Physical Sciences, Vol. 6, No. 2, (2016), pp. 607–618. [Google Scholar]
  14. U. Ghosh, S. Sengupta, S. Sarkar, and S. Das, Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function, American Journal of Mathematical Analysis, Vol. 3, No. 2, (2015), pp.32–38. [Google Scholar]
  15. J. C. Prajapati, Certain properties of Mittag-Leffler function with argument xa, α > 0, Italian Journal of Pure and Applied Mathematics, Vol. 30, (2013), pp. 411–416. [Google Scholar]
  16. C.-H. Yu, Differential properties of fractional functions, International Journal of Novel Research in Interdisciplinary Studies, Vol.7, No. 5, (2020), pp. 1–14. [Google Scholar]
  17. C.-H. Yu, Fractional Clairaut's differential equation and its application, International Journal of Computer Science and Information Technology Research, Vol. 8, Issue 4, (2020), pp. 46–49. [Google Scholar]
  18. C.-H. Yu, Separable fractional differential equations, International Journal of Mathematics and Physical Sciences Research, Vol. 8, Issue 2, (2020), pp. 30–34. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.