Open Access
Issue |
E3S Web Conf.
Volume 268, 2021
2020 6th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2020)
|
|
---|---|---|
Article Number | 01077 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/202126801077 | |
Published online | 11 June 2021 |
- Li D., Zhao S., Da Ronch A., et al. A review of modelling and analysis of morphing wings. Progress in Aerospace Sciences, 2018, 100: 46–62. [CrossRef] [Google Scholar]
- Woods B.K., Bilgen O., Friswell M.I. Wind tunnel testing of the fish bone active camber morphing concept. Journal of Intelligent Material Systems and Structures. 2014;25(7): 772–785. [CrossRef] [Google Scholar]
- Chen Q., Bai P., Ying W.L., Leng J.S., Zhan H.L., Liu Z.Q. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge. Acta Aerodynamica Sinica. 2010;1:006. [Google Scholar]
- Yokozeki T., Sugiura A., Hirano Y. Development of variable camber morphing airfoil using corrugated structure. Journal of Aircraft. 2014;51(3): 1023–1029. [CrossRef] [Google Scholar]
- Soneda K., Yokozeki T., Imamura T., et al. Aero-structural Analysis of Corrugated Morphing Wing with Spanwise Camber Change. AIAA Scitech 2020 Forum. 2020. [Google Scholar]
- Woods B.K., Dayyani I., Friswell M.I. Fluid/structure-interaction analysis of the fish-bone-active-camber morphing concept. Journal of Aircraft. 2014;52(1): 307–319. [CrossRef] [Google Scholar]
- Murugan S., Woods B.K., Friswell M.I. Hierarchical modeling and optimization of camber morphing airfoil. Aerospace Science and Technology. 2015;42:31–8. [CrossRef] [Google Scholar]
- Zhang J., Shaw A.D., Wang C., et al. Aeroelastic model and analysis of an active camber morphing wing. Aerospace Science and Technology, 2021, 111(5):106534. [CrossRef] [Google Scholar]
- Zhang P., Zhou L., Cheng W., Qiu T. Conceptual design and experimental demonstration of a distributedly actuated morphing wing. Journal of Aircraft. 2014;52(2): 452–461. [CrossRef] [Google Scholar]
- Yin W., Liu L., Chen Y., Leng J. Variable camber wing based on pneumatic artificial muscles. Second International Conference on Smart Materials and Nanotechnology in Engineering 2009. International Society for Optics and Photonics. [Google Scholar]
- Campanile L.F., Anders S. Aerodynamic and aeroelastic amplification in adaptive belt-rib airfoils. Aerospace Science & Technology, 2005;9(1): 55–63. [CrossRef] [Google Scholar]
- AYL, ASC, BTL, et al. Harnessing 3D printed residual stress to design heat-shrinkable metamaterials. Results in Physics, 2018, 11: 85–95. [CrossRef] [Google Scholar]
- Stein S., Wedler J., Rhein S., et al. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures. Results in Physics, 2017, 7: 2534–2539. [CrossRef] [Google Scholar]
- Li X., Li Z., Huang H., et al. Broadband spring-connected bi-stable piezoelectric vibration energy harvester with variable potential barrier. Results in Physics, 2020, 18:103173. [CrossRef] [Google Scholar]
- Bae J.S., Kyong N.H., Seigler T.M., Inman D.J. Aeroelastic considerations on shape control of an adaptive wing. Journal of intelligent material systems and structures. 2005;16(11-12):1051–6. [CrossRef] [Google Scholar]
- Barbarino S., Pecora R., Lecce L., et al. A Novel SMA-based Concept for Airfoil Structural Morphing. Journal of Materials Engineering & Performance, 2009; 18(5-6):696–705. [CrossRef] [Google Scholar]
- Bilgen O., Flores E.I.S., Friswell M.I. Optimization of Surface-Actuated Piezocomposite Variable-Camber Morphing Wings. ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems American Society of Mechanical Engineers, 2011:315–322. [CrossRef] [Google Scholar]
- Gaspari A.D., Ricci S. A Two-Level Approach for the Optimal Design of Morphing Wings Based On Compliant Structures. Journal of Intelligent Material Systems & Structures, 2011;22(10): 1091–1111. [CrossRef] [Google Scholar]
- Molinari G., Quack M., Dmitriev V., et al. Aero-Structural Optimization of Morphing Airfoils for Adaptive Wings. Journal of Intelligent Material Systems & Structures, 2011;22(10): 1075–1089. [CrossRef] [Google Scholar]
- Thuwis G.A., Abdalla M.M., Gürdal Z. Optimization of a variable-stiffness skin for morphing high-lift devices. Smart materials and structures. 2010;19(12):124010. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.