Open Access
Issue
E3S Web Conf.
Volume 269, 2021
2021 International Conference on Environmental Engineering, Agricultural Pollution and Hydraulical Studies (EEAPHS 2021)
Article Number 01020
Number of page(s) 10
Section Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/202126901020
Published online 09 June 2021
  1. T. M. Buzug, “Computed tomography: from photon statistics to modern cone-beam CT” 1nd edition, Springer-Verlag, Berlin Heidelberg, 2008. [Google Scholar]
  2. D. J. Brenner and E. J. Hall, Computed tomography-an increasing source of radiation exposure, New England Journal of Medicine, 357 (2007), 2277-2284. [Google Scholar]
  3. A. Berrington de Gonzalez, M. Mahesh and K.-P. Kim, Projected cancer risks from computed tomographic scans performed in the United States in 2007, Journal of Vascular Surgery, 51(3) (2009), 2071-2077. [Google Scholar]
  4. Jiang Hsieh, Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise, Medical Physics, 25(11) (2009), 2139-2147. [Google Scholar]
  5. T. F. Li, X. Li, J. Wang, J. H. Wen, H. B. Lu and Z. R. Liang, Nonlinear sinogram smoothing for lowdose X-ray CT, IEEE Transactions on Nuclear Science, 51(5) (2004), 2505-2513. [Google Scholar]
  6. A. C. Kak and M. Slaney, ” Principles of computerized tomographic imaging” New York: IEEE Press, 1987. [Google Scholar]
  7. A. H. Andersen and A. C. Kak, Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm, Ultrasonic Imaging, 6(1) (1984), 81-94. [Google Scholar]
  8. E. Y. Sidky, C. M. Kao and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT, arXiv: 0904.4495. [Google Scholar]
  9. E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine and Biology, 53(17) (2008), 4777--4807. [Google Scholar]
  10. G. Herman and R. Davidi, On Image Reconstruction from a Small Number of Projections, Inverse Problems, 24(4) (2008), 45011C45028. [Google Scholar]
  11. H. Yu and G. Wang, A soft-threshold fifiltering approach for reconstruction from a limited number of projections, Physics in Medicine and Biology, 55(13) (2010), 3905-3916. [Google Scholar]
  12. L. Ritschl, F. Bergner, C. Fleischmann and M. Kachelriess, Improved total variation-based CT image reconstruction applied to clinical data, Physics in Medicine and Biology, 56(6) (2011), 1545-1561. [Google Scholar]
  13. Z. Chen, X. Jin, L. Li and G. Wang, A limitedangle CT reconstruction method based on anisotropic TV minimization, Physics in Medicine and Biology, 58(7) (2013), 2119-2141. [Google Scholar]
  14. X. Lu, Y. Sun and Y. Yuan, Optimization for limited angle tomography in medical image processing, Pattern Recognition, 44 (2011), 2427C2435. [Google Scholar]
  15. Q. Xu, H. Y. Yu, X. Q. Mou, L. Zhang, J. Hsieh and G. Wang, Low-dose X-ray CT Reconstruction via Dictionary Learning, IEEE Trans. Medical Imaging, 31(9) (2012), 1682-1697. [Google Scholar]
  16. D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306. [Google Scholar]
  17. Y. J. Lu, X. Q. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan and A. F. Chatziioannou, Source Reconstruction for Spectrally-resolved Bioluminescence Tomography with Sparse A priori Information, Optics Express, 17 (2009), 8062-8080. [Google Scholar]
  18. X. Mou, J. Wu, T. Bai, Q. Xu, H. Yu and G. Wang, Dictionary learning based low-dose x-ray CT reconstruction using a balancing principle, Proceedings of the SPIE, 9212 (2014). [Google Scholar]
  19. E. Y. Sidky, R. Chartrand, J. M. Boone and X. Pan, Constrained TpV Minimization for Enhanced Exploitation of Gradient Sparsity: Application to CT Image Reconstruction, IEEE Journal of Translational Engineering in Health and Medicine, 2 (2014), 1-18. [Google Scholar]
  20. Rudin Leonid I., S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268. [Google Scholar]
  21. Mianyi C., Deling M., Peng H., et al., A CT Reconstruction Algorithm Based on L1/2 Regularization, Computational and Mathematical Methods in Medicine, 2014 (2014). [Google Scholar]
  22. C. Miao and H. Yu, A General-Thresholding Solution for lp (0 < p < 1) Regularized CT Reconstruction, IEEE Transactions on Image Processing, 24 (2015), 5455-5468. [Google Scholar]
  23. E. J. Candes, M.B. Wakin and S.P. Boyd, Enhancing Sparsity by Reweighted `1 Minimization, Journal of Fourier Analysis and Applications, 14 (2008), 877-905. [Google Scholar]
  24. Z. Xu, H. Zhang, Y. Wang, X. Chang and Y. Liang, L1/2 regularization, Science China Information Sciences, 53 (2010), 1159-1169. [Google Scholar]
  25. Z. Xu, X. Chang, F. Xu and H. Zhang, L1/2 Regularization: A Thresholding Representation Theory and a Fast Solver, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 1013-1027. [Google Scholar]
  26. D. A. Lorenz, Convergence rates and source conditions for Tikhonov regularization with sparsity constraints, Journal of Inverse and Illposed Problems, 16 (2008), 463-478. [Google Scholar]
  27. W. Cao, J. Sun and Z. Xu, Fast image deconvolution using closed-form thresholding formulas of Lq (q = 1/2, 2/3 ) regularization, Journal of Visual Communication and Image Representation, 24 (2013), 31-41. [Google Scholar]
  28. X. Jia, B. Dong, Y. Lou and B. Steve B Jiang, GPU-based iterative cone-beam CT reconstruction using tight frame regularization, Physics in Medicine and Biology, 56 (2011), 3787-3807. [Google Scholar]
  29. H. Gao, J. F. Cai, Z. Shen and H. Zhao, Robust principal component analysis-based fourdimensional computed tomography, Physics in Medicine and Biology, 56 (2011), 3181-3198. [Google Scholar]
  30. B. Zhao, H. Gao, H. Ding, and S. Molloi, Tightframe based iterative image reconstruction for spectral breast CT, Medical Physics, 40 (2013), 031905. [Google Scholar]
  31. A. Ron and Z. Shen, Affiffiffine systems in L2(Rd) II: Dual systems, Journal of Fourier Analysis and Applications, 3 (1997), 617-637. [Google Scholar]
  32. E. Gardu˜no, Herman, G. T. and R. Davidi, Reconstruction from a Few Projections by l1Minimization of the Haar Transform, Inverse Problem, 27 (2011), 55006-55018. [Google Scholar]
  33. J. Luo, J. Liu, W. Li, Y. Zhu and R. Jiang, Image Reconstruction from Sparse Projections Using STransform, Journal of Mathematical Imaging and Vision, 43 (2012), 227-239. [Google Scholar]
  34. E. J. Candes, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509. [Google Scholar]
  35. X. Chen, F. Xu and Y. Ye, Lower Bound Theory of Nonzero Entries in Solutions of l2-lp Minimization, IEEE Transactions on Information Theory, 32 (2010), 2832C2852. [Google Scholar]
  36. Kazufumi Ito and Karl Kunisch, A Note on the Existence of Nonsmooth Nonconvex Optimization Problems, Journal of Optimization Theory and Applications, 163 (2014), 697-706. [Google Scholar]
  37. J. Bolte, S. Sabach and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, 146 (2013), 459-494. [Google Scholar]
  38. Baiocchi C, Buttazzo G, Gastaldi F, et al., General existence theorems for unilateral problems in continuum mechanics, Mathematical Programming, 100 (1988), 149-189. [Google Scholar]
  39. J. F. Cai, S. Osher and Z. Shen, Split Bregman Methods and Frame Based Image Restoration, Siam Journal on Multiscale Modeling and Simulation, 8(2) (2009), 337-369. [Google Scholar]
  40. Alfred Auslender and Marc Teboulle, “Asymptotic Cones and Functions in Optimization and Variational Inequalities” Springer Monographs in Mathematics, 2003. [Google Scholar]
  41. Storath M, Weinmann A, Frikel J and Unser M, Joint image reconstruction and segmentation using the Potts model, Inverse Problems, 31 (2015), 25003-25031. [Google Scholar]
  42. Y. Xiao, J. Yang and X. Yuan, Alternating algorithms for total variation image reconstruction from random projections Inverse Problems and Imaging, Inverse Problems and Imaging, 6 (2012), 547-563. [Google Scholar]
  43. B. He, A class of projection and contraction methods for monotone variational inequalities, Applied Mathematics and Optimization, 35 (1997), 69-76. [Google Scholar]
  44. B. He M. H. Xu, A general framework of contraction methods for monotone variational inequalities, Pacifific Journal of Optimization, 4 (2008), 195-212. [Google Scholar]
  45. Xcat phantom website Available: http://www.hopkinsradiology.org/DMIP/Research/xcat. [Google Scholar]
  46. Tomographic X-ray data of a walnut, http://www.fifips.fifi/dataset.php. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.