Open Access
Issue
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
Article Number 01030
Number of page(s) 8
Section Energy Development and Utilization and Energy Storage Technology Application
DOI https://doi.org/10.1051/e3sconf/202127101030
Published online 15 June 2021
  1. R.A.R.C. Gopura, D.S.V. Bandara, J.M.P. Gunasekara, T.S.S. Jayawardane. Recent trends in EMG-based control methods for assistive robots[J]. Electrodiagnosis in New Frontiers of Clinical Research, 2013: 237–248. [Google Scholar]
  2. A. Gijsberts, M. Atzori, C. Castellini, H. Muller, B. Caputo. Movement error rate for evaluation of machine learning methods for s EMG-based hand movement classification^]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22 (4): 735–744. [CrossRef] [Google Scholar]
  3. Q. Ding, X. Zhao, J. Han. Continuous motion estimation of multiple joints of upper limbs based on EMG signal. Robot, 2014, 36 (4): 469–476. [Google Scholar]
  4. D.H. Zhang, X.G. Zhao, J.D. Han, Y.W. Zhao. A comparative study on PCA and LDA based EMG pattern recognition for anthropomorphic robotic hand[C]. In: Proceedings of the 2014 International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014. 4850–4855. [CrossRef] [Google Scholar]
  5. Y. Li, Y. Tian, W. Chen. EMG signal modeling and pattern recognition based on FFT blind recognition [J]. Acta Automatica Sinica, 2012, 38(1): 128–134. [CrossRef] [Google Scholar]
  6. Q. Ding, A. Xiong, X. Zhao, J. Han. Research and application review of movement intention recognition method based on surface EMG[J]. Acta Automatica Sinica. 2016, 42(1): 13–25. [Google Scholar]
  7. X. Sun. Motion control of upper limb rehabilitation robot based on quantitative identification of surface EMG signal[D]. Harbin: Harbin Institute of Technology, 2010. [Google Scholar]
  8. S. Yang. Pattern recognition and intelligent calculation MATLAB technology realization[M], Beijing: Electronic Industry Press, 2008. [Google Scholar]
  9. K. Momen, S. Krishnan, T. Chau. Electromyographic signals corresponding to user-selected intentional movements for multifunction prosthesis control[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(4): 535542. [CrossRef] [Google Scholar]
  10. Ronager. Power Spectrum Analysis of EMG Pattern in Normal and Diseased Muscles[J]. Neurol. Sei 1989, 94(1-3):283–294. [CrossRef] [Google Scholar]
  11. Q. Huang. Research and application of support vector machine multi-class classification algorithm (Dl. Hebei: Hebei University of Technology, 2005. [Google Scholar]
  12. A.D.C. Chan, K. Englehart. Continuous Myoelectric Control for Prostheses Using Hidden Markov Models[J]. Transaction on Biomedical Engineering, 2005. 52(1): 121–124 [CrossRef] [Google Scholar]
  13. N. Deng, Y. Tian. Support vector machine theory, algorithm and extension[[M]. Beijing: Science Press 2009. [Google Scholar]
  14. M. Zecca, S. Micera, M.C. Carrozza, et al. Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal[J]. Critical Reviews in Biomedical Engineering. 2002, 30(4-6): 459–485. [CrossRef] [PubMed] [Google Scholar]
  15. J. Li, A. Wang, G. Zhang, et al. Translation. Pattern Recognition[M]. Beijing: Publishing House of Electronics Industry, 2006 [Google Scholar]
  16. H. Zhao. Support vector machine classification method and its application in text classification research field], Dalian: Dalian University of Technology, 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.