Open Access
Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 7 | |
Section | Research on Energy Chemistry and Chemical Simulation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202127103008 | |
Published online | 15 June 2021 |
- Ballarino M., Cipriano A., Tita R., et al. Deficiency in the nuclear long noncoding rna charme causes myogenic defects and heart remodeling in mice. EMBO J., 2018, 37. [Google Scholar]
- Ahuja P., Sdek P., MacLellan W.R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiological reviews, 2007, 87: 521–544 [CrossRef] [PubMed] [Google Scholar]
- Eisner D.A., Caldwell J.L., Kistamas K., et al. Calcium and excitation-contraction coupling in the heart. Circ Res, 2017, 121: 181–195 [CrossRef] [PubMed] [Google Scholar]
- Robinson P., Griffiths P.J., Watkins H., et al. Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ Res, 2007, 101: 1266–1273 [CrossRef] [PubMed] [Google Scholar]
- Pinali C., Bennett H., Davenport J.B., et al. Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: This organization is perturbed in heart failure. Circ Res, 2013, 113: 1219–1230 [CrossRef] [PubMed] [Google Scholar]
- Hayashi T., Martone M.E., Yu Z., et al. Threedimensional electron microscopy reveals new details of membrane systems for ca2+ signaling in the heart. Journal of cell science, 2009, 122: 1005–1013 [CrossRef] [PubMed] [Google Scholar]
- McNutt N.S., Fawcett D.W. The ultrastructure of the cat myocardium. Ii. Atrial muscle. The Journal of cell biology, 1969, 42: 46–67 [CrossRef] [PubMed] [Google Scholar]
- Bridge J.H. Relationships between the sarcoplasmic reticulum and sarcolemmal calcium transport revealed by rapidly cooling rabbit ventricular muscle. The Journal of general physiology, 1986, 88: 437–473 [CrossRef] [PubMed] [Google Scholar]
- Negretti N., Varro A., Eisner D.A. Estimate of net calcium fluxes and sarcoplasmic reticulum calcium content during systole in rat ventricular myocytes. The Journal of physiology, 1995, 486 (Pt 3): 581–591 [CrossRef] [PubMed] [Google Scholar]
- Eisner D.A., Trafford A.W., Diaz M.E., et al. The control of ca release from the cardiac sarcoplasmic reticulum: Regulation versus autoregulation. Cardiovascular research, 1998, 38: 589–604 [CrossRef] [PubMed] [Google Scholar]
- Bernardo B.C., Weeks K.L., Pretorius L., et al. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacology & therapeutics, 2010, 128: 191–227 [CrossRef] [PubMed] [Google Scholar]
- Davies C.H., Harding S.E., Poole-Wilson P.A. Cellular mechanisms of contractile dysfunction in human heart failure. European heart journal, 1996, 17: 189–198 [CrossRef] [PubMed] [Google Scholar]
- Beuckelmann D.J., Näbauer M., Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation, 1992, 85: 1046–1055 [CrossRef] [PubMed] [Google Scholar]
- Coraboeuf E., Nargeot J. Electrophysiology of human cardiac cells. Cardiovascular research, 1993, 27: 1713–1725 [CrossRef] [PubMed] [Google Scholar]
- Reuter H. The dependence of slow inward current in purkinje fibres on the extracellular calcium-concentration. The Journal of physiology, 1967, 192: 479–492 [CrossRef] [PubMed] [Google Scholar]
- Bean B.P. Classes of calcium channels in vertebrate cells. Annual review of physiology, 1989, 51: 367–384 [CrossRef] [PubMed] [Google Scholar]
- Chen C.F., Hess P. Mechanism of gating of t-type calcium channels. The Journal of general physiology, 1990, 96: 603–630 [CrossRef] [PubMed] [Google Scholar]
- Richard S., Leclercq F., Lemaire S., et al. Ca2+ currents in compensated hypertrophy and heart failure. Cardiovascular research, 1998, 37: 300–311 [CrossRef] [PubMed] [Google Scholar]
- Nuss H.B., Houser S.R. T-type ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes. Circ Res, 1993, 73: 777–782 [CrossRef] [PubMed] [Google Scholar]
- Sen L., Smith T.W. T-type ca2+ channels are abnormal in genetically determined cardiomyopathic hamster hearts. Circ Res, 1994, 75: 149–155 [CrossRef] [PubMed] [Google Scholar]
- Momtaz A., Coulombe A., Richer P., et al. Action potential and plateau ionic currents in moderately and severely doca-salt hypertrophied rat hearts. Journal of molecular and cellular cardiology, 1996, 28: 2511–2522 [CrossRef] [PubMed] [Google Scholar]
- Kääb S., Nuss H.B., Chiamvimonvat N., et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res, 1996, 78: 262–273 [CrossRef] [PubMed] [Google Scholar]
- Scamps F., Mayoux E., Charlemagne D., et al. Calcium current in single cells isolated from normal and hypertrophied rat heart. Effects of beta-adrenergic stimulation. Circ Res, 1990, 67: 199–208 [CrossRef] [PubMed] [Google Scholar]
- Qin D., Zhang Z.H., Caref E.B., et al. Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium. Circ Res, 1996, 79: 461–473 [CrossRef] [PubMed] [Google Scholar]
- Keung E.C. Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res, 1989, 64: 753–763 [CrossRef] [PubMed] [Google Scholar]
- Gomez A.M., Valdivia H.H., Cheng H., et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science (New York, NY), 1997, 276: 800–806 [CrossRef] [PubMed] [Google Scholar]
- Dixon I.M., Lee S.L., Dhalla N.S. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res, 1990, 66: 782–788 [CrossRef] [PubMed] [Google Scholar]
- Mayoux E., Callens F., Swynghedauw B., et al. Adaptational process of the cardiac ca2+ channels to pressure overload: Biochemical and physiological properties of the dihydropyridine receptors in normal and hypertrophied rat hearts. Journal of cardiovascular pharmacology, 1988, 12: 390–396 [CrossRef] [PubMed] [Google Scholar]
- Litwin S.E., Zhang D., Bridge J.H. Dyssynchronous ca(2+) sparks in myocytes from infarcted hearts. Circ Res, 2000, 87: 1040–1047 [CrossRef] [PubMed] [Google Scholar]
- Sah R., Ramirez R.J., Backx P.H. Modulation of ca2+release in cardiac myocytes by changes in repolarization rate. Circulation Research, 2002, 90: 165–173 [CrossRef] [PubMed] [Google Scholar]
- Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac purkinje cell. The Journal of general physiology, 1985, 85: 247–289 [CrossRef] [PubMed] [Google Scholar]
- Picht E., Zima A.V., Shannon T.R., et al. Dynamic calcium movement inside cardiac sarcoplasmic reticulum during release. Circulation Research, 2011, 108: 847–856 [CrossRef] [PubMed] [Google Scholar]
- Wehrens X.H., Lehnart S.E., Reiken S., et al. Ryanodine receptor/calcium release channel pka phosphorylation: A critical mediator of heart failure progression. Proc Natl Acad Sci U S A., 2006, 103: 511–518 [CrossRef] [PubMed] [Google Scholar]
- Jiang M.T., Lokuta A.J., Farrell E.F., et al. Abnormal ca2+release, but normal ryanodine receptors, in canine and human heart failure. Circulation Research, 2002, 91: 1015–1022 [CrossRef] [PubMed] [Google Scholar]
- Sipido K.R., Stankovicova T., Flameng W., et al. Frequency dependence of ca2+ release from the sarcoplasmic reticulum in human ventricular myocytes from end-stage heart failure. Cardiovascular research, 1998, 37: 478–488 [CrossRef] [PubMed] [Google Scholar]
- Mills G.D., Harris D.M., Chen X., et al. Intracellular sodium determines frequency-dependent alterations in contractility in hypertrophied feline ventricular myocytes. American journal of physiology Heart and circulatory physiology, 2007, 292: H1129–1138 [CrossRef] [PubMed] [Google Scholar]
- Bassani J.W., Yuan W., Bers D.M. Fractional sr ca release is regulated by trigger ca and sr ca content in cardiac myocytes. The American journal of physiology, 1995, 268: C1313–1319 [CrossRef] [PubMed] [Google Scholar]
- Bers D.M., Eisner D.A., Valdivia H.H. Sarcoplasmic reticulum ca2+ and heart failure: Roles of diastolic leak and ca2+ transport. Circ Res, 2003, 93: 487–490 [CrossRef] [PubMed] [Google Scholar]
- Lyon A.R., Bannister M.L., Collins T., et al. Serca2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circulation: Arrhythmia and Electrophysiology, 2011, 4: 362–372 [CrossRef] [Google Scholar]
- Ikeda Y., Hoshijima M., Chien K.R. Toward biologically targeted therapy of calcium cycling defects in heart failure. Physiology (Bethesda, Md), 2008, 23: 6–16 [CrossRef] [Google Scholar]
- Meissner G. The structural basis of ryanodine receptor ion channel function. The Journal of general physiology, 2017, 149: 1065–1089 [CrossRef] [PubMed] [Google Scholar]
- Marx S.O., Reiken S., Hisamatsu Y., et al. Pka phosphorylation dissociates fkbp12.6 from the calcium release channel (ryanodine receptor). Cell, 2000, 101: [PubMed] [Google Scholar]
- R. Ma, Steven, R., O. Ms Progression of heart failure: Is protein kinase a hyperphosphorylation of the ryanodine receptor a contributing factor? Circulation, 2002, 105: [Google Scholar]
- Naohiro Y., Le X.A.P.D., et al. Molecular basis of calmodulin binding to cardiac muscle ca(2+) release channel (ryanodine receptor). The Journal of biological chemistry, 2003, 278: [Google Scholar]
- P. Gj, Noriaki, I. Aberrant interaction of calmodulin with the ryanodine receptor develops hypertrophy in the neonatal cardiomyocyte. The Biochemical journal, 2011, 438: [Google Scholar]
- G M, S HJ. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on ca2+ and is modulated by mg2+, adenine nucleotide, and calmodulin. The Journal of biological chemistry, 1987, 262: [Google Scholar]
- R. Fb, M. Bja, M. Bt, et al. Differential ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. American journal of physiology Cell physiology, 2000, 279: [Google Scholar]
- E. Ls, T. Wxh, Steven, R., et al. Phosphodiesterase 4d deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell, 2005, 123: [Google Scholar]
- Lehnart S.E., Mongillo M., Bellinger A., et al. Leaky ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. Journal of Clinical Investigation, 2008, [Google Scholar]
- Heinzel F.R., Bito V., Volders P.G.A., et al. Spatial and temporal inhomogeneities during ca2+ release from the sarcoplasmic reticulum in pig ventricular myocytes. Circulation Research, 2002, 91: 1023–1030 [CrossRef] [PubMed] [Google Scholar]
- Cheng H., Lederer M.R., Lederer W.J., et al. Calcium sparks and [ca2+]i waves in cardiac myocytes. The American journal of physiology, 1996, 270: C148–159 [CrossRef] [PubMed] [Google Scholar]
- Mironneau J., Arnaudeau S., Macrez-Lepretre N., et al. Ca2+ sparks and ca2+ waves activate different ca(2+)-dependent ion channels in single myocytes from rat portal vein. Cell calcium, 1996, 20: 153–160 [CrossRef] [PubMed] [Google Scholar]
- Wehrens X.H., Lehnart S.E., Huang F., et al. Fkbp12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell, 2003, 113: 829–840 [CrossRef] [PubMed] [Google Scholar]
- Neef S., Dybkova N., Sossalla S., et al. Camkii-dependent diastolic sr ca2+ leak and elevated diastolic ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res, 2010, 106: 1134–1144 [CrossRef] [PubMed] [Google Scholar]
- Nattel S., Dobrev D. The multidimensional role of calcium in atrial fibrillation pathophysiology: Mechanistic insights and therapeutic opportunities. European heart journal, 2012, 33: 1870–1877 [CrossRef] [PubMed] [Google Scholar]
- E K, R. Ma, E. Eb. Effects of rapamycin on ryanodine receptor/ca(2+)-release channels from cardiac muscle. Circulation research, 1996, 78: [Google Scholar]
- P. Xr, H. Vh, K B, et al. The immunophilin fk506-binding protein modulates ca2+ release channel closure in rat heart. The Journal of physiology, 1997, 500 (Pt 2): [Google Scholar]
- J P, R. Qfa, L. Sg Ca(2+)-handling proteins and heart failure: Novel molecular targets? Current medicinal chemistry, 2003, 10: [Google Scholar]
- Jamille L., M. Dalv, C. Im Calcium handling proteins: Structure, function, and modulation by exercise. Heart failure reviews, 2014, 19: [Google Scholar]
- C. Bb, L. Wk, Lynette, P., et al. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacology & therapeutics, 2010, 128: [Google Scholar]
- Sjaastad I., Wasserstrom J.A., Sejersted O.M. Heart failure -- a challenge to our current concepts of excitation-contraction coupling. The Journal of physiology, 2003, 546: 33–47 [CrossRef] [PubMed] [Google Scholar]
- P. La, Dobromir, D., T. Wxh. Calcium signaling and cardiac arrhythmias. Circulation research, 2017, 120: [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.