Open Access
Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 03020 | |
Number of page(s) | 8 | |
Section | Research on Energy Chemistry and Chemical Simulation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202127103020 | |
Published online | 15 June 2021 |
- Hou, Y., et al., Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol, 2019. 15(10): p. 565–581. [CrossRef] [PubMed] [Google Scholar]
- Elfawy, H.A. and B. Das, Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci, 2019. 218: p. 165–184. [CrossRef] [PubMed] [Google Scholar]
- Perry, V.H., J.A. Nicoll, and C. Holmes, Microglia in neurodegenerative disease. Nat Rev Neurol, 2010. 6(4): p. 193–201. [CrossRef] [PubMed] [Google Scholar]
- Kauppila, T.E.S., J.H.K. Kauppila, and N.G. Larsson, Mammalian Mitochondria and Aging: An Update. Cell Metab, 2017. 25(1): p. 57–71. [CrossRef] [PubMed] [Google Scholar]
- Lacolley, P., et al., Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev, 2017. 97(4): p. 1555–1617. [CrossRef] [PubMed] [Google Scholar]
- Imai, S. and L. Guarente, NAD+ and sirtuins in aging and disease. Trends Cell Biol, 2014. 24(8): p. 464–471. [CrossRef] [PubMed] [Google Scholar]
- Jung, M. and G.P. Pfeifer, Aging and DNA methylation. BMC Biol, 2015. 13: p. 7. [CrossRef] [PubMed] [Google Scholar]
- Sasako, T. and K. Ueki, [Insulin/IGF-1 signaling and aging]. Nihon Rinsho, 2016. 74(9): p. 1435–1440. [PubMed] [Google Scholar]
- Shankar, S.K., Biology of aging brain. Indian J Pathol Microbiol, 2010. 53(4): p. 595–604. [CrossRef] [PubMed] [Google Scholar]
- Chi, H., H.Y. Chang, and T.K. Sang, Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. Int J Mol Sci, 2018. 19(10). [Google Scholar]
- Ding, W., et al., Neurodegeneration and cognition in Parkinson's disease: a review. Eur Rev Med Pharmacol Sci, 2015. 19(12): p. 2275–2281. [PubMed] [Google Scholar]
- Shinagawa, S., [Language Symptoms of Alzheimer's Disease]. Brain Nerve, 2016. 68(5): p. 551–557. [PubMed] [Google Scholar]
- Soldan, A., et al., Cognitive reserve and long-term change in cognition in aging and preclinical Alzheimer's disease. Neurobiol Aging, 2017. 60: p. 164–172. [CrossRef] [PubMed] [Google Scholar]
- Chong, R.K., C.L. Jones, and F.B. Horak, Postural set for balance control is normal in Alzheimer's but not in Parkinson's disease. J Gerontol A Biol Sci Med Sci, 1999. 54(3): p. M129–35. [CrossRef] [PubMed] [Google Scholar]
- Sengoku, R., Aging and Alzheimer's disease pathology. Neuropathology, 2020. 40(1): p. 22–29. [CrossRef] [PubMed] [Google Scholar]
- Kerr, J.S., et al., Mitophagy and Alzheimer's Disease: Cellular and Molecular Mechanisms. Trends Neurosci, 2017. 40(3): p. 151–166. [CrossRef] [PubMed] [Google Scholar]
- Li, N., et al., Robust neuronal dynamics in premotor cortex during motor planning. Nature, 2016. 532(7600): p. 459–464. [CrossRef] [PubMed] [Google Scholar]
- Nachev, P., C. Kennard, and M. Husain, Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci, 2008. 9(11): p. 856–869. [CrossRef] [PubMed] [Google Scholar]
- Albin, R.L., A.B. Young, and J.B. Penney, The functional anatomy of basal ganglia disorders. Trends Neurosci, 1989. 12(10): p. 366–375. [CrossRef] [PubMed] [Google Scholar]
- Jankovic, J., Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry, 2008. 79(4): p. 368–376. [CrossRef] [PubMed] [Google Scholar]
- Trist, B.G., D.J. Hare, and K.L. Double, Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell, 2019. 18(6): p. e13031. [CrossRef] [PubMed] [Google Scholar]
- Wakabayashi, K., et al., The Lewy body in Parkinson's disease and related neurodegenerative disorders. Mol Neurobiol, 2013. 47(2): p. 495–508. [CrossRef] [PubMed] [Google Scholar]
- Walker, F.O., Huntington's disease. Lancet, 2007. 369(9557): p. 218–228. [CrossRef] [PubMed] [Google Scholar]
- Dauer, W. and S. Przedborski, Parkinson's disease: mechanisms and models. Neuron, 2003. 39(6): p. 889–909. [CrossRef] [PubMed] [Google Scholar]
- Ross, C.A. and S.J. Tabrizi, Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol, 2011. 10(1): p. 83–98. [CrossRef] [PubMed] [Google Scholar]
- Briggs, R., S.P. Kennelly, and D. O'Neill, Drug treatments in Alzheimer's disease. Clin Med (Lond), 2016. 16(3): p. 247–253. [CrossRef] [PubMed] [Google Scholar]
- Du, Z., et al., Physical activity can improve cognition in patients with Alzheimer's disease: a systematic review and meta-analysis of randomized controlled trials. Clin Interv Aging, 2018. 13: p. 1593–1603. [CrossRef] [PubMed] [Google Scholar]
- Armstrong, M.J. and M.S. Okun, Diagnosis and Treatment of Parkinson Disease: A Review. Jama, 2020. 323(6): p. 548–560. [CrossRef] [PubMed] [Google Scholar]
- Habets, J.G.V., et al., An update on adaptive deep brain stimulation in Parkinson's disease. Mov Disord, 2018. 33(12): p. 1834–1843. [CrossRef] [PubMed] [Google Scholar]
- Pokhabov, D.V., V.G. Abramov, and D.D. Pokhabov, [Possibilities of non-drug treatment for Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova, 2016. 116(8): p. 22–29. [CrossRef] [Google Scholar]
- Wyant, K.J., A.J. Ridder, and P. Dayalu, Huntington's Disease-Update on Treatments. Curr Neurol Neurosci Rep, 2017. 17(4): p. 33. [CrossRef] [PubMed] [Google Scholar]
- Blennow K., Leon M., Zetterberg H. Alzheimer's disease.[J]. Lancet, 2006, 368(9533):387–403. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.