Open Access
Issue
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
Article Number 03028
Number of page(s) 5
Section Research on Energy Chemistry and Chemical Simulation Performance
DOI https://doi.org/10.1051/e3sconf/202127103028
Published online 15 June 2021
  1. Nikoobakht B., El-Sayed M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method[J]. Chem Mater, 2003, 15(10): 1957–1962. [CrossRef] [Google Scholar]
  2. Meng L.J., Niu L.Y., Li L., et al. Gold nanoparticles grown on ionic liquid-functionalized single-walled carbon nanotubes: new materials for photothermal therapy[J]. Chem Eur J, 2012, 18(42): 13314–13319. [CrossRef] [Google Scholar]
  3. Fang W., Yang J., Gong J., et al. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles[J]. Adv Funct Mater, 2012, 22(4): 842–848. [CrossRef] [Google Scholar]
  4. Robinson J.T., Tabakman S.M., Liang Y.Y., et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J]. J Am Chem Soc, 2011, 133(17): 6825–6831. [CrossRef] [PubMed] [Google Scholar]
  5. Meng L.J., Xia W.J., Liu L., et al. Golden single-walled carbon nanotubes prepared using double layer polysaccharides bridge for photothermal therapy[J]. ACS Appl Mater Interfaces, 2014, 6(7): 4989–4996. [CrossRef] [PubMed] [Google Scholar]
  6. Cheng L., Wang C., Feng L.Z., et al. Functional nanomaterials for phototherapies of cancer[J]. Chem Rev, 2014, 114(21): 10869–10939. [CrossRef] [PubMed] [Google Scholar]
  7. Chen W.S., Zeng K., Liu H., et al. Cell membrane camouflaged hollow Prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer[J]. Adv Funct Mater, 2017, 27(11): 1605795. [CrossRef] [Google Scholar]
  8. Wu L., Wu M., Zeng Y., et al. Multifunctional PEG modified DOX loaded mesoporous silica nanoparticle @CuS nanohybrids as photo-thermal agent and thermal-triggered drug release vehicle for hepatocellular arcinoma treatment[J]. Nanotechnology, 2015, 26(2): 025102. [CrossRef] [PubMed] [Google Scholar]
  9. Sheng Z.H., Hu D.H., Xue M.M., et al. Indocyanine green nanoparticles for the ranostic applications[J]. Nano-micro Letters, 2013, 5(3): 145–150. [CrossRef] [Google Scholar]
  10. Jung, H. S.; Lee, J.-H.; Kim, K.; Koo, S.; Verwilst, P.; Sessler, J.; Kang, C.; Kim, J.S. A Mitochondria-Targeted Cryptocyanine-Based Photothermogenic Photosensitizer. [J]. J. Am. Chem. Soc. 2017, 139(29): 9972–9978. [CrossRef] [PubMed] [Google Scholar]
  11. Zhao L.Y., Liu Y.M., Chang R., et al. Supramalecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy[J]. Advanced Functional Materials, 2019, 29(4): 1806877. [CrossRef] [Google Scholar]
  12. Lovell J.F., Jin C.S., Huynh E., et al. Porphysome nanovesicles generater by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Materials, 2011, 10(4): 324–332. [CrossRef] [PubMed] [Google Scholar]
  13. Li X.S., Kim C., Lee S.A., et al. Nano structured phthalocyanine assemblies with protein-driven switchable photoactivities for biophotonic imaging and therapy[J]. Journal of the American Chemical Society, 2017, 137(31): 10880–10886 [Google Scholar]
  14. Cai, Y.; Liang, P.; Tang, Q.; Yang, X.; Si, W.; Huang, W.; Zhang, Q.; Dong, X. Diketopyrrolopyrrole-Triphenylamine Organic Nanoparticles as Multifunctional Reagents for Photoacoustic ImagingGuided Photodynamic/Photothermal Synergistic Tumor Therapy. [J]. ACS Nano 2017, 11(1): 1054–1063. [CrossRef] [PubMed] [Google Scholar]
  15. Vines J.B., Lim D., Park H. Contemporary polymerbased nanoparticle systems for photothermal therapy[J]. Polymers, 2018, 10(12): 1357 [CrossRef] [Google Scholar]
  16. Lyu Y., Zeng J.F., Jiang Y.Y., et al. Enhancing both biodegradability and efficacy of semiconducting polymer nanoparticles for photoacoustic imaging and photothermal therapy[J]. ACS Nano, 2018, 12(2): 1801–1810. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.