Open Access
Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 03033 | |
Number of page(s) | 6 | |
Section | Research on Energy Chemistry and Chemical Simulation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202127103033 | |
Published online | 15 June 2021 |
- Cheng J., Liu G. The relationship between mitochondria and aging and countermeasures against aging [J]. Journal of Practical Diabetes, 2019, 15(01):6–8. [CrossRef] [Google Scholar]
- Wang Y., et al. The role of mitochondria in cellular senescence[J]. Medical Review, 2019, 25(08):1457–1462. [Google Scholar]
- Chen L., Yang D. Advances in the study of mitochondrial SIRT3 in kidney disease[J]. Medical Review, 2020, 26(13):2502–2506. [Google Scholar]
- Chen Y., et al. Mitochondrial quality control and vascular aging[J]. Advances in Cardiovascular Diseases, 2019, 40(04):586–590. [Google Scholar]
- Oelze M., Kroller-Schon S., Steven S., et al. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging[J]. Hypertension, 2014, 63: 390–396. [CrossRef] [PubMed] [Google Scholar]
- Ungvari Z., William E.S., Anna C. Mitochondria and aging in the vascular system [J]. J Mol Med (Berl), 2010, 88(10):1021–1027. [CrossRef] [PubMed] [Google Scholar]
- Matzinger P. Tolerance, danger, and the extended family[J]. Annu Rev Immunol, 1994, 12(1): 991–1045. doi: 10.1146/ [CrossRef] [PubMed] [Google Scholar]
- Liu J., Zhang L. Mitochondrial dysfunction and the correlation between inflammation and aging[J]. Chinese Journal of Geriatric Multiorgan Diseases, 2019, 18(06):469–472. [Google Scholar]
- Caielli S., Athale S., Domic B., et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus [J]. J Exp Med, 2016, 13(5): 697–713. doi: 10.1084/jem.20151876. [CrossRef] [Google Scholar]
- Wu J., Sun L., Chen X., et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA [J]. Science, 2013, 339(6121): 826–830. doi: 10.1126/science.1229963. [CrossRef] [PubMed] [Google Scholar]
- Cichoz-Lach H., Michalak A. Oxidative stress as a crucial factor in liver diseases[J]. World J Gastroenterol, 2014, 20 (25):8082–8091. [CrossRef] [PubMed] [Google Scholar]
- Linnane A.W., Marzuki S., Ozawa T., et al. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases[J]. Lancet, 1989, 1(8639): 642–645 [CrossRef] [PubMed] [Google Scholar]
- Lee J.Y., Jung G.Y., Heo H.J., et al. 4-hydroxynonenal induces vascular smooth muscle cell apoptosis through mitochondrial generation of reactive oxygen species[J]. Toxical Lett, 2006, 166:212 [CrossRef] [Google Scholar]
- Bratic A., Larsson N.G. The role of mitochondria in aging. J Clin Invest. 2013;123(3):951–957. doi: 10.1172/JCI64125 [CrossRef] [PubMed] [Google Scholar]
- Stewart J.B., et al. Strong purifying selection in transmission of mammalian mitochondrial DNA. PloS Biol. 2008;6(1): e10 [CrossRef] [PubMed] [Google Scholar]
- Stewart J.B., Freyer C., Elson J.L., Larsson N.-G. Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nat Rev Genet. 2008;9(9):657–662. [CrossRef] [PubMed] [Google Scholar]
- Ameur A., et al. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet. 2011;7(3): e1002028. [CrossRef] [PubMed] [Google Scholar]
- Votyakova T.V., Reynolds L.J. Deltapai(m) - Depandentad independent prodation of reactive oxygen species by ratbrainmito chondria. Neuro chem 2001; 79(2): 266–277. [Google Scholar]
- Barja G. Aging invertebrates and the effect of coloricre atriction: amitochondrial free radical production mtDNA damage mechanism. Biol Rev 2004; 79: 235–251. [CrossRef] [Google Scholar]
- Napoleone P., Ferrante F., Chirardi O. Age-dependent nerve cell loss in the brain of spragre-Dawley rats: Effect of long terms acetyl L-carnitine treatment. Arch Gerontol Geriatr 1999; 10: 173–185. [CrossRef] [Google Scholar]
- Pollard, P.J., Wortham, N.C., and Tomlinson, I.P. (2003). The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann. Med. 35, 632–639. [CrossRef] [PubMed] [Google Scholar]
- Napoli, C., Martin-Padura, I., de Nigris, F., Giorgio, M., Mansueto, G., Somma, P., Condorelli, M., Sica, G., De Rosa, G., and Pelicci, P. (2003). Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc. Natl. Acad. Sci. USA 100, 2112–2116. [CrossRef] [Google Scholar]
- Ying Z., Xie X., Chen M., et al. Alpha-lipoic acid activates eNOS through activation of PI3-kinase /Akt signaling pathway[J]. Vascul Pharmacol, 2015, 64: 28–35. [CrossRef] [PubMed] [Google Scholar]
- Newmeyer D.D., Farschon D.M., Reed T.C. Cell-free opoptosis in xenopus egg extracts: lnhibition by bel-2 and requirement for an organelle fraction neriched in mitochondria Cell 1994; 24: 353–364 [Google Scholar]
- Robert S. Balaban, Shino Nemoto, Toren Finkel. Mitochondria, Oxidants, and Aging[J]. Cell, 2005, 120(4). [Google Scholar]
- Rahman M., Nirala N.K., Singh A., et al. Drosophila Sirt2 /mammalian SI R T3 deacetylates ATP synthaseßand regulates complex V activity[J]. J Cell Biol, 2014, 206(2): 289–305. [CrossRef] [PubMed] [Google Scholar]
- Ahn B.H., Kim H.S., Song S., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis[J]. Proc Natl Acad Sci U S.A., 2008, 105(38): 14447–14452. [CrossRef] [Google Scholar]
- Finley L.W., Haas W., Desquiret-Dumas V., et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity[J]. PLoS One, 2011, 6(8): e23295. [CrossRef] [PubMed] [Google Scholar]
- Kumar S., Lombard D.B. Mitochondrial sirtuins and their relationships with metabolic disease and cancer[J]. Antioxid Redox Signal, 2015, 22(2): 1060–1077. [CrossRef] [PubMed] [Google Scholar]
- Guarente L. The many faces of sirtuins: Sirtuins and the Warburg effect[J]. Nat Med, 2014, 20(1): 24–25. [CrossRef] [PubMed] [Google Scholar]
- Bochaton T., Crola-Da-Silva C., Pillot B., et al. Inhibition of myocardial reperfusion injury by ischemic postconditioning requires sirtuin 3-mediated deacetylation of cyclophilin D[J]. J Mol Cell Cardiol, 2015, 84: 61–69. [CrossRef] [PubMed] [Google Scholar]
- Samant S.A., Zhang H.J., Hong Z., et al. SI R T3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress[J]. Mol Cell Biol, 2014, 34(5): 807–819. [CrossRef] [PubMed] [Google Scholar]
- Gioscia-Ryan R.A., Larocca, T.J., Sindler, A.L., et al. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice [J]. J Physiol, 2014, 592(12): 2549–2561. [CrossRef] [PubMed] [Google Scholar]
- Robin A.J. Smith, Michael P. Murphy. Animal and human studies with the mitochondria-targeted antioxidant MitoQ[J]. Annals of the New York Academy of Sciences, 2010, 1201(1). [PubMed] [Google Scholar]
- Rafael de Cabo, Ph.D., and Mark P. Mattson, etc. Effects of Intermittent Fasting on Health, Aging, and Disease[J]. N Engl J Med, 2019, 381:2541–2551. [CrossRef] [PubMed] [Google Scholar]
- Mattson M.P., Arumugam T.V. Hallmarks of brain aging adaptive and pathological modification by metabolic states. Cell Metab 2018; 27:1176–1199. [CrossRef] [PubMed] [Google Scholar]
- Menzies F.M., Fleming A., Caricasole A., et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 2017; 93:1015–1034. [CrossRef] [PubMed] [Google Scholar]
- Pu R., et al. Caloric restriction delays skeletal muscle aging in mice via AMPK-SIRT1-mitochondrial pathway. Journal of the Third Military Medical University, 2017, 39(6): 548–552. [Google Scholar]
- Tong Q., Wang Z., Huang X. Mitochondrial function- related active molecules of anti-aging natural products[J]. Natural Products Research and Development, 2018, 30(09):1649–1654. [Google Scholar]
- Zhang S.Q., et al. Icariin, a natural flavonol glycoside, extends healthspan in mice[J]. Exp Gerontol, 2015, 69:226–235. [CrossRef] [PubMed] [Google Scholar]
- Schlernitzauer A., et al. Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans[J]. PLoS One, 2013, 8: e78788. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.