Open Access
This article has a note: [https://doi.org/10.1051/e3sconf/202127104048]


Issue
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
Article Number 04016
Number of page(s) 5
Section Environmental Materials and Solid Waste Recycling Technology
DOI https://doi.org/10.1051/e3sconf/202127104016
Published online 15 June 2021
  1. Deng, T.T., et al. Stable narrowband red emission in fluorotellurate KTeF5:Mn4+ via Mn4+ noncentralsite occupation [J]. 2018, 6(16): 4418–4426. [Google Scholar]
  2. Chen, L., Lin C.C., Yeh C.W., et al. Light Converting Inorganic Phosphors for White LightEmitting Diodes [J]. 2011, 3(3): 2172–2195. [Google Scholar]
  3. Xie R.J., Hirosaki N.J.S., Materials T.O.A. Silicon-based oxynitride and nitride phosphors for white LEDs—A review [J]. 2008, 8(7-8): 588–600. [Google Scholar]
  4. Takarkhede M.G., Patil R.R., Moharil S.V., et al. Synthesis of K2SiF6:Mn4+ phosphor for LED lamp; proceedings of the 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017), 2018 [C]. [Google Scholar]
  5. Fujimoto S.J.O.M. Properties of transparent Ce:YAG ceramic phosphors for white LED [J]. 2011. [Google Scholar]
  6. Wang, L., Xie R.J., Suehiro, T., et al. DownConversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives [J]. Chem Rev, 2018, 118(4): 1951–2009. [CrossRef] [PubMed] [Google Scholar]
  7. Schubert E.F., Kim J.K.J.S. Solid-state light sources getting smart [J]. 2005, 308(5726): 1274–1278. [Google Scholar]
  8. Crawford Mhjijostiqe. LEDs for solid-state lighting: performance challenges and recent advances [J]. 2009, 15(4): 1028–1040. [Google Scholar]
  9. Xia Z.G., Meijerink, A. Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications [J]. Chemical Society Reviews, 2016, 46. [Google Scholar]
  10. Jang, I., Kim, J., Kim, H., et al. Enhancement of water resistance and photo-efficiency of K2SiF6:Mn4+ phosphor through dry-type surface modification [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 850–854. [CrossRef] [Google Scholar]
  11. Ming, H., Liu, S., Liu, L., et al. Highly Regular, Uniform K3ScF6:Mn(4+) Phosphors: Facile Synthesis, Microstructures, Photoluminescence Properties, and Application in Light-Emitting Diode Devices [J]. ACS Appl Mater Interfaces, 2018, 10(23): 19783–95. [CrossRef] [PubMed] [Google Scholar]
  12. Piao, X., Machida, K.I, Horikawa, T., et al. Preparation of CaAlSiN3:Eu2' Phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties [J]. 2007, 19(18): 4592–4599. [Google Scholar]
  13. Tang, F., Su, Z., Ye, H., et al. A set of manganese ion activated fluoride phosphors (A2BF6:Mn4+, A = K, Na, B = Si, Ge, Ti): synthesis below 0 °C and efficient room-temperature photoluminescence [J]. Journal of Materials Chemistry C, 2016, 4(40): 9561–9568. [CrossRef] [Google Scholar]
  14. Han, T., Lang, T., Wang, J., et al. Large microsized K2TiF6:Mn4+ red phosphors synthesised by a simple reduction reaction for high colour-rendering white light-emitting diodes [J]. RSC Advances, 2015, 5(121): 100054–9. [CrossRef] [Google Scholar]
  15. Jang, I., Kim, J., Kim, H., et al. Enhancement of water resistance and photo-efficiency of K2SiF6:Mn4+ phosphor through dry-type surface modification [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 850–854. [CrossRef] [Google Scholar]
  16. Yi, X., Li, R., Zhu, H., et al. KNiAlE.AIn4 red phosphor: room-temperature synthesis and electronic/vibronic structures [J]. Journal of Materials Chemistry C, 2018, 6(8): 2069–2076. [CrossRef] [Google Scholar]
  17. Wang, Z., Zhou, Y., Liu, Y., et al. Highly efficient red phosphor Cs2GeF6:Mn4+ for warm white lightemitting diodes [J]. RSC Advances, 2015, 5(100): 82409–14. [CrossRef] [Google Scholar]
  18. Ming, H., Liu, S., Liu, L., et al. Highly Regular, Uniform K3ScF6:Mn(4+) Phosphors: Facile Synthesis, Microstructures, Photoluminescence Properties, and Application in Light-Emitting Diode Devices [J]. ACS Appl Mater Interfaces, 2018, 10(23): 19783–95. [CrossRef] [PubMed] [Google Scholar]
  19. Piao, X., Machida, K.I., Horikawa, T., et al. Preparation of CaAlSiN3:Eu2' Phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties [J]. 2007, 19(18): 4592–4599. [Google Scholar]
  20. Dong, Q., Guo, C., He, L., et al. Improving the moisture resistance and luminescent properties of K2TiF6:Mn4+ by coating with CaF2 [J]. Materials Research Bulletin, 2019, 115: 98–104. [CrossRef] [Google Scholar]
  21. Huang, D., Zhu, H., Deng, Z., et al. Moisture-Resistant Mn4+-Doped Core-Shell Structured Fluoride Red Phosphor Exhibiting High Luminous Efficacy for Warm White LEDs [J]. Angewandte Chemie, 2018. [Google Scholar]
  22. Zhou Y.Y., Song E.H., Deng T.T., et al. Waterproof Narrow-Band Fluoride Red Phosphor K2TiF6:Mn4+ via Facile Superhydrophobic Surface Modification [J]. ACS Appl Mater Interfaces, 2018, 10(1): 880–889. [CrossRef] [PubMed] [Google Scholar]
  23. Zhou, Y., Zhuang, W., Hu, Y., et al. Cyan-Green Phosphor (Lu2M)(Al4Si)O12:Ce(3+) for High-Quality LED Lamp: Tunable Photoluminescence Properties and Enhanced Thermal Stability [J]. Inorg Chem, 2019, 58(2): 1492–1500. [CrossRef] [PubMed] [Google Scholar]
  24. Zhao, M., Liao, H., Molokeev, M.S., et al. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition [J]. Light Sci Appl, 2019, 8: 38. [CrossRef] [PubMed] [Google Scholar]
  25. Zhou Y.Y., Song E.H., Brik M.G., et al. Nonequivalent Mn4+ doping into A2NaScF6 (A = K, Rb, Cs) hosts toward short fluorescence lifetime for backlight display application [J]. Journal of Materials Chemistry C, 2019, 7(30): 9203–9210. [CrossRef] [Google Scholar]
  26. Hong, F., Cheng, H., Song, C., et al. Novel polygonal structure Mn(4+) activated In(3+)-based Elpasolite-type hexafluorides red phosphor for warm white light-emitting diodes (WLEDs) [J]. Dalton Trans, 2019, 48(4): 1376–1385. [CrossRef] [PubMed] [Google Scholar]
  27. Zhang, B., Zhang, J.-W., Zhong, H., et al. Highly Stable Modified Phosphors of Ba2SiO4:Eu2+ by Forming a Robust Hydrophobic Inorganic Surface Layer of Silicon-Oxy-Imide-Carbide [J]. The Journal of Physical Chemistry C, 2017, 121(21): 11616–22. [CrossRef] [Google Scholar]
  28. Arunkumar, P., Kim, Y.H., Kim, H.J., et al. Hydrophobic Organic Skin as a Protective Shield for Moisture-Sensitive Phosphor-Based Optoelectronic Devices [J]. ACS Appl Mater Interfaces, 2017, 9(8): 7232–7240. [CrossRef] [PubMed] [Google Scholar]
  29. Huang, L., Liu, Y., Si, S., et al. A new reductive dl- mandelic acid loading approach for moisture-stable Mn4+ doped fluorides [J]. Chem Commun (Camb), 2018, 54(84): 11857–60. [CrossRef] [PubMed] [Google Scholar]
  30. Huang, D., Zhu, H., Deng, Z., et al. MoistureResistant Mn(4+) -Doped Core-Shell-Structured Fluoride Red Phosphor Exhibiting High Luminous Efficacy for Warm White Light-Emitting Diodes [J]. Angew Chem Int Ed Engl, 2019, 58(12): 3843–3847. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.