Open Access
Issue
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
Article Number 04037
Number of page(s) 9
Section Environmental Materials and Solid Waste Recycling Technology
DOI https://doi.org/10.1051/e3sconf/202127104037
Published online 15 June 2021
  1. M. J. Berridge, P. Lipp, and M. D. Bootman, “The versatility and universality of calcium signalling,” Nat. Rev. Mol. Cell Biol., vol. 1, no. 1, pp. 11–21, 2000, doi: 10.1038/35036035. [CrossRef] [PubMed] [Google Scholar]
  2. M. D. Bootman, T. Chehab, G. Bultynck, J. B. Parys, and K. Rietdorf, “The regulation of autophagy by calcium signals: Do we have a consensus?,” Cell Calcium, vol. 70, no. August 2017, pp. 32–46, 2018, doi: 10.1016/j.ceca.2017.08.005. [CrossRef] [PubMed] [Google Scholar]
  3. C. Cui, R. Merritt, L. Fu, and Z. Pan, “Targeting calcium signaling in cancer therapy,” Acta Pharm. Sin. B, vol. 7, no. 1, pp. 3–17, 2017, doi: 10.1016Zj.apsb.2016.11.001. [CrossRef] [PubMed] [Google Scholar]
  4. Y. Zhou, T. K. Frey, and J. J. Yang, “Viral calciomics: Interplays between Ca2+ and virus,” Cell Calcium, vol. 46, no. 1, pp. 1–17, 2009, doi: 10.1016/j.ceca.2009.05.005. [CrossRef] [PubMed] [Google Scholar]
  5. T. Godfraind, “Discovery and Development of Calcium Channel Blockers,” Front. Pharmacol., vol. 8, May 2017, doi: 10.3389/fphar.2017.00286. [CrossRef] [Google Scholar]
  6. W. Lewis, “Clotrimazole inhibits cell proliferation in vitro and in vivo,” Nat. Med., vol. 1, no. 5, pp. 1–6, 1995. [CrossRef] [PubMed] [Google Scholar]
  7. D. M. Haverstick, T. N. Heady, T. L. Macdonald, and L. S. Gray, “Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry1,” Cancer Res., vol. 60, no. 4, pp. 1002–1008, 2000. [PubMed] [Google Scholar]
  8. D. Hanahan and R. A. Weinberg, “The Hallmarks of Cancer,” Cell, vol. 100, no. 1, pp. 57–70, Jan. 2000, doi: 10.1016/S0092-8674(00)81683-9. [CrossRef] [PubMed] [Google Scholar]
  9. M. J. Berridge, P. Lipp, and M. D. Bootman, “The versatility and universality of calcium signalling,” Nat. Rev. Mol. Cell Biol., vol. 1, no. 1, pp. 11–21, Oct. 2000, doi: 10.1038/35036035. [CrossRef] [PubMed] [Google Scholar]
  10. W. A. Catterall, E. Perez-Reyes, T.P. Snutch, and J. Striessnig, “International Union of Pharmacology. XLVIII. Nomenclature and Structure-Function Relationships of Voltage-Gated Calcium Channels,” Pharmacol. Rev., vol. 57, no. 4, pp. 411–425, Dec. 2005, doi: 10.1124/pr.57.4.5. [Google Scholar]
  11. V. R. Rao, M. Perez-Neut, S. Kaja, and S. Gentile, “Voltage-Gated Ion Channels in Cancer Cell Proliferation,” Cancers, vol. 7, no. 2, Art. no. 2, Jun. 2015, doi: 10.3390/cancers7020813. [Google Scholar]
  12. J. Jones et al., “Gene Signatures of Progression and Metastasis in Renal Cell Cancer,” Clin. Cancer Res., vol. 11, no. 16, pp. 5730–5739, Aug. 2005, doi: 10.1158/1078-0432.CCR-04-2225. [CrossRef] [PubMed] [Google Scholar]
  13. M. A. Ginos et al., “Identification of a Gene Expression Signature Associated with Recurrent Disease in Squamous Cell Carcinoma of the Head and Neck,” Cancer Res., vol. 64, no. 1, pp. 55–63, Jan. 2004, doi: 10.1158/0008-5472.CAN-03-2144. [CrossRef] [PubMed] [Google Scholar]
  14. C.-Y. Wang, M.-D. Lai, N. N. Phan, Z. Sun, and Y.-C. Lin, “Meta-Analysis of Public Microarray Datasets Reveals Voltage-Gated Calcium Gene Signatures in Clinical Cancer Patients,” PLOS ONE, vol. 10, no. 7, p. e0125766, Jul. 2015, doi: 10.1371/journal.pone.0125766. [CrossRef] [PubMed] [Google Scholar]
  15. J.-Y. Zhang et al., “L-Type Cav 1.2 Calcium Channel-a-1C Regulates Response to Rituximab in Diffuse Large B-Cell Lymphoma,” Clin. Cancer Res., vol. 25, no. 13, pp. 4168–4178, Jul. 2019, doi: 10.1158/1078-0432.CCR-18-2146. [Google Scholar]
  16. M. V. Yusenko, R. P. Kuiper, T. Boethe, B. Ljungberg, A. G. van Kessel, and G. Kovacs, “Highresolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas,” BMC Cancer, vol. 9, p. 152, May 2009, doi: 10.1186/1471-2407-9-152. [CrossRef] [PubMed] [Google Scholar]
  17. C. Cui, R. Merritt, L. Fu, and Z. Pan, “Targeting calcium signaling in cancer therapy,” Acta Pharm. Sin. B, vol. 7, no. 1, pp. 3–17, Jan. 2017, doi: 10.1016Zj.apsb.2016.11.001. [CrossRef] [PubMed] [Google Scholar]
  18. S. L. Pomeroy et al., “Prediction of central nervous system embryonal tumour outcome based on gene expression,” Nature, vol. 415, no. 6870, Art. no. 6870, Jan. 2002, doi: 10.1038/415436a. [CrossRef] [PubMed] [Google Scholar]
  19. Y. Hao, G. Triadafilopoulos, P. Sahbaie, H. S. Young, M. B. Omary, and A. W. Lowe, “Gene Expression Profiling Reveals Stromal Genes Expressed in Common Between Barrett’s Esophagus and Adenocarcinoma,” Gastroenterology, vol. 131, no. 3, pp. 925–933, Sep. 2006, doi: 10.1053/j.gastro.2006.04.026. [CrossRef] [PubMed] [Google Scholar]
  20. G. Turashvili et al., “Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis,” BMC Cancer, vol. 7, p. 55, Mar. 2007, doi: 10.1186/1471-2407-7-55. [CrossRef] [PubMed] [Google Scholar]
  21. X. Zhou et al., “CACNA1B (Cav2.2) Overexpression and Its Association with Clinicopathologic Characteristics and Unfavorable Prognosis in Non-Small Cell Lung Cancer,” Disease Markers, Jan. 03, 2017. https://www.hindawi.com/journals/dm/2017/6136401/ (accessed Jan. 08, 2021). [Google Scholar]
  22. H. L. Roderick and S. J. Cook, “Ca 2+ signalling checkpoints in cancer: remodelling Ca 2+ for cancer cell proliferation and survival,” Nat. Rev. Cancer, vol. 8, no. 5, Art. no. 5, May 2008, doi: 10.1038/nrc2374. [Google Scholar]
  23. L. Antal and M. Martin-Caraballo, “T-type Calcium Channels in Cancer,” Cancers, vol. 11, no. 2, Jan. 2019, doi: 10.3390/cancers11020134. [CrossRef] [Google Scholar]
  24. J.-S. Lee et al., “Expression Signature of E2F1 and Its Associated Genes Predict Superficial to Invasive Progression of Bladder Tumors,” J. Clin. Oncol., vol. 28, no. 16, pp. 2660–2667, Apr. 2010, doi: 10.1200/JCO.2009.25.0977. [CrossRef] [PubMed] [Google Scholar]
  25. I. Azimi, S. J. Roberts-Thomson, and G.R. Monteith, “Calcium influx pathways in breast cancer: opportunities for pharmacological intervention,” Br. J. Pharmacol., vol. 171, no. 4, pp. 945–960, Feb. 2014, doi: 10.1111/bph.12486. [CrossRef] [PubMed] [Google Scholar]
  26. T. Ohkubo and J. Yamazaki, “T-type voltage- activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells,” Int. J. Oncol., vol. 41, no. 1, pp. 267–275, Jul. 2012, doi: 10.3892/ijo.2012.1422. [PubMed] [Google Scholar]
  27. J. T. Taylor et al., “Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation,” Cancer Lett., vol. 267, no. 1, pp. 116–124, Aug. 2008, doi: 10.1016/j.canlet.2008.03.032. [CrossRef] [PubMed] [Google Scholar]
  28. B. Dziegielewska, L. S. Gray, and J. Dziegielewski, “T-type calcium channels blockers as new tools in cancer therapies,” Pflüg. Arch.-Eur. J. Physiol., vol. 466, no. 4, pp. 801–810, Apr. 2014, doi: 10.1007/s00424-014-1444-z. [CrossRef] [Google Scholar]
  29. N. C. K. Valerie et al., “Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells,” Biochem. Pharmacol., vol. 85, no. 7, pp. 888–897, Apr. 2013, doi: 10.1016/j.bcp.2012.12.017. [CrossRef] [PubMed] [Google Scholar]
  30. U. I. Scholl et al., “Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism,” Nat. Genet., vol. 45, no. 9, pp. 1050–1054, Sep. 2013, doi: 10.1038/ng.2695. [CrossRef] [PubMed] [Google Scholar]
  31. R. Chen et al., “Cav1.3 channel a 1D protein is overexpressed and modulates androgen receptor transactivation in prostate cancers11This work was partially supported by grants from DoD PCRP program (W81XWH-09-1-0455) and KUMC Valk Foundation to Dr Benyi Li, and grants from China Natural Science Foundation to Dr Benyi Li (NSFC #81172427) and Dr Jun Yang (NSFC #81101927). This project was also supported by the ‘ Chutian Scholar ’ program funded by Hubei Province of China dedicated to China Three Gorges University.,” Urol. Oncol. Semin. Orig. Investig., vol. 32, no. 5, pp. 524–536, Jul. 2014, doi: 10.1016/j.urolonc.2013.05.011. [Google Scholar]
  32. N. N. Phan, C.-Y. Wang, C.-F. Chen, Z. Sun, M.-D. Lai, and Y.-C. Lin, “Voltage-gated calcium channels: Novel targets for cancer therapy,” Oncol. Lett., vol. 14, no. 2, pp. 2059–2074, Aug. 2017, doi: 10.3892/ol.2017.6457. [CrossRef] [PubMed] [Google Scholar]
  33. I. McFadzean and A. Gibson, “The developing relationship between receptor-operated and store- operated calcium channels in smooth muscle,” Br. J. Pharmacol., vol. 135, no. 1, pp. 1–13, Jan. 2002, doi: 10.1038/sj.bjp.0704468. [CrossRef] [PubMed] [Google Scholar]
  34. E. Adinolfi, M. Capece, F. Amoroso, E. De Marchi, and A. Franceschini, “Emerging roles of P2X receptors in cancer,” Curr. Med. Chem., vol. 22, no. 7, pp. 878–890, 2015, doi: 10.2174/0929867321666141012172913. [CrossRef] [PubMed] [Google Scholar]
  35. F. Amoroso et al., “The P2X7 receptor is a key modulator of the PI3K/GSK3 ß /VEGF signaling network: evidence in experimental neuroblastoma,” Oncogene, vol. 34, no. 41, Art. no. 41, Oct. 2015, doi: 10.1038/onc.2014.444. [Google Scholar]
  36. D. V. Francesco, V.-P. Valentina, and C. Alba, “P2X receptors in cancer growth and progression,” Biochem. Pharmacol., p. 114–350, Nov. 2020, doi: 10.1016/j.bcp.2020.114350. [Google Scholar]
  37. S. I. Deutsch, A. H. Tang, J. A. Burket, and A. D. Benson, “NMDA receptors on the surface of cancer cells: Target for chemotherapy?,” Biomed. Pharmacother. Biomedecine Pharmacother., vol. 68, no. 4, p. 493, May 2014, doi: 10.1016/j.biopha.2014.03.012. [CrossRef] [Google Scholar]
  38. A. B. Parekh and J. W. Putney, “Store-Operated Calcium Channels,” Physiol. Rev., vol. 85, no. 2, pp. 757–810, Apr. 2005, doi: 10.1152/physrev.00057.2003. [CrossRef] [PubMed] [Google Scholar]
  39. S. Thebault et al., “Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells,” Cancer Res., vol. 66, no. 4, pp. 2038–2047, Feb. 2006, doi: 10.1158/0008-5472.CAN-05-0376. [CrossRef] [PubMed] [Google Scholar]
  40. E. B. Charbel, B. Gabriel, and E. Antoine, “Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation-El Boustany,” vol. Vol.47, p. p.2068–2077, Feb. 2008, doi: 10.1002/hep.22263. [Google Scholar]
  41. J. H. Nathaniel and N. C. Daniel, “Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature | Proceedings of the Royal Society B: Biological Sciences,” Jul. 2020, doi: 10.1098/rspb.2020.1309. [Google Scholar]
  42. X. Yao, H.-Y. Kwan, and Y. Huang, “Regulation of TRP Channels by Phosphorylation,” Neurosignals, vol. 14, no. 6, pp. 273–280, 2005, doi: 10.1159/000093042. [CrossRef] [PubMed] [Google Scholar]
  43. S. F. Pedersen, G. Owsianik, and B. Nilius, “TRP channels: An overview,” Cell Calcium, vol. 38, no. 3, pp. 233–252, Sep. 2005, doi: 10.1016/j.ceca.2005.06.028. [CrossRef] [PubMed] [Google Scholar]
  44. S. L. Yang, Q. Cao, K. C. Zhou, Y. J. Feng, and Y. Z. Wang, “Transient receptor potential channel C3 contributes to the progression of human ovarian cancer,” Oncogene, vol. 28, no. 10, Art. no. 10, Mar. 2009, doi: 10.1038/onc.2008.475. [Google Scholar]
  45. G. Shapovalov, A. Ritaine, R. Skryma, and N. Prevarskaya, “Role of TRP ion channels in cancer and tumorigenesis,” Semin. Immunopathol., vol. 38, no. 3, pp. 357–369, May 2016, doi: 10.1007/s00281-015-0525-1. [CrossRef] [PubMed] [Google Scholar]
  46. D. Gkika and N. Prevarskaya, “TRP channels in prostate cancer: the good, the bad and the ugly?,” Asian J. Androl., vol. 13, no. 5, pp. 673–676, Sep. 2011, doi: 10.1038/aja.2011.18. [CrossRef] [PubMed] [Google Scholar]
  47. C. Van Haute, D. De Ridder, and B. Nilius, “TRP Channels in Human Prostate,” Sci. World J., vol. 10, pp. 1597–1611, Aug. 2010, doi: 10.1100/tsw.2010.149. [CrossRef] [Google Scholar]
  48. C. L. So, M. J. G. Milevskiy, and G. R. Monteith, “Transient receptor potential cation channel subfamily V and breast cancer,” Lab. Invest., vol. 100, no. 2, Art. no. 2, Feb. 2020, doi: 10.1038/s41374-019-0348-0. [Google Scholar]
  49. V. C. Bomben, K. L. Turner, T.-T.C. Barclay, and H. Sontheimer, “Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas,” J. Cell. Physiol., vol. 226, no. 7, pp. 1879–1888, Jul. 2011, doi: 10.1002/jcp.22518. [CrossRef] [PubMed] [Google Scholar]
  50. N. Tajeddine and P. Gailly, “TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling,” J. Biol. Chem., vol. 287, no. 20, pp. 16146–16157, May 2012, doi: 10.1074/jbc.M112.340034. [CrossRef] [PubMed] [Google Scholar]
  51. B. He et al., “Silencing TRPC1 expression inhibits invasion of CNE2 nasopharyngeal tumor cells,” Oncol. Rep., vol. 27, no. 5, pp. 1548–1554, May 2012, doi: 10.3892/or.2012.1695. [PubMed] [Google Scholar]
  52. S. L. Yang, Q. Cao, K. C. Zhou, Y. J. Feng, and Y. Z. Wang, “Transient receptor potential channel C3 contributes to the progression of human ovarian cancer,” Oncogene, vol. 28, no. 10, Art. no. 10, Mar. 2009, doi: 10.1038/onc.2008.475. [Google Scholar]
  53. X. Ma et al., “Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells,” Proc. Natl. Acad. Sci. U. S. A., vol. 109, no. 40, pp. 16282–16287, Oct. 2012, doi: 10.1073/pnas.1202989109. [CrossRef] [PubMed] [Google Scholar]
  54. R. Cai, G. Ren, X. Ding, Y. Wang, and Y. Jin, “[Essential role of TRPC6 in the proliferation of gastric cancer and its mechanism],” Zhonghua Zhong Liu Za Zhi, vol. 34, no. 8, pp. 577–581, Aug. 2012, doi: 10.3760/cmaj.issn.0253-3766.2012.08.004. [PubMed] [Google Scholar]
  55. L. M. Duncan et al., “Melastatin Expression and Prognosis in Cutaneous Malignant Melanoma,” J. Clin. Oncol., vol. 19, no. 2, pp. 568–576, Jan. 2001, doi: 10.1200/JCO.2001.19.2.568. [CrossRef] [PubMed] [Google Scholar]
  56. C. Holzmann et al., “Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells,” Oncotarget, vol. 6, no. 39, pp. 41783–41793, Dec. 2015, doi: 10.18632/oncotarget.6157. [CrossRef] [PubMed] [Google Scholar]
  57. A. Hantute-Ghesquier, A. Haustrate, N. Prevarskaya, and V. Lehen’kyi, “TRPM Family Channels in Cancer,” Pharmaceuticals, vol. 11, no. 2, Jun. 2018, doi: 10.3390/ph11020058. [CrossRef] [Google Scholar]
  58. R. Xie et al., “Calcium Promotes Human Gastric Cancer via a Novel Coupling of Calcium-Sensing Receptor and TRPV4 Channel,” Cancer Res., vol. 77, no. 23, pp. 6499–6512, Dec. 2017, doi: 10.1158/0008-5472.CAN-17-0360. [CrossRef] [PubMed] [Google Scholar]
  59. S. Kaiser et al., “Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer,” Genome Biol., vol. 8, no. 7, p. R131, 2007, doi: 10.1186/gb-2007-8-7-r131. [CrossRef] [PubMed] [Google Scholar]
  60. J. Xie, H. Pan, J. Yao, Y. Zhou, and W. Han, “SOCE and cancer: Recent progress and new perspectives,” Int. J. Cancer, vol. 138, no. 9, pp. 2067–2077, 2016, doi: https://doi.org/10.1002/ijc.29840. [CrossRef] [PubMed] [Google Scholar]
  61. E. D. Covington, M. M. Wu, and R. S. Lewis, “Essential Role for the CRAC Activation Domain in Store-dependent Oligomerization of STIM1,” Mol. Biol. Cell, vol. 21, no. 11, pp. 1897–1907, Jun. 2010, doi: 10.1091/mbc.E10-02-0145. [CrossRef] [PubMed] [Google Scholar]
  62. S. Yang, J. J. Zhang, and X.-Y. Huang, “Orai1 and STIM1 are critical for breast tumor cell migration and metastasis,” Cancer Cell, vol. 15, no. 2, pp. 124–134, Feb. 2009, doi: 10.1016/j.ccr.2008.12.019. [CrossRef] [PubMed] [Google Scholar]
  63. A. Vashisht, M. Trebak, and R. K. Motiani, “STIM and Orai proteins as novel targets for cancer therapy. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis,” Am. J. Physiol.-Cell Physiol., vol. 309, no. 7, pp. C457–C469, Oct. 2015, doi: 10.1152/ajpcell.00064.2015. [CrossRef] [Google Scholar]
  64. Hamill, Marty. “Improved Patch-Clamp Techniques for High-Resolution Current Recording from Cells and Cell-Free Membrane Patches.” Pflügers Archiv, vol. 391, no. 2, Aug. 1981, pp. 85–100, doi:10.1007/BF00656997. [CrossRef] [Google Scholar]
  65. A. Molleman, “Basic Theoretical Principles,” in Patch Clamping, vol. 2, John Wiley & Sons, Ltd, 2003, p. 33. [Google Scholar]
  66. M. A. Gandini, A. Sandoval, and R. Felix, “PatchClamp Recording of Voltage-Sensitive Ca2+ Channels,” Cold Spring Harb. Protoc., vol. 2014, no. 4, p. 066092, Apr. 2014, doi: 10.1101/pdb.top066092. [Google Scholar]
  67. J. Gao, H. Zhang, P. Xiong, X. Yan, C. Liao, and G. Jiang, “Application of electrophysiological technique in toxicological study: From manual to automated patch-clamp recording,” TrAC Trends Anal. Chem., vol. 133, p. 116082, Dec. 2020, doi: 10.1016/j.trac.2020.116082. [CrossRef] [Google Scholar]
  68. P. Chen, W. Zhang, J. Zhou, P. Wang, L. Xiao, and M. Yang, “Development of planar patch clamp technology and its application in the analysis of cellular electrophysiology,” Prog. Nat. Sci., vol. 19, no. 2, pp. 153–160, Feb. 2009, doi: 10.1016/j.pnsc.2008.06.012. [CrossRef] [Google Scholar]
  69. L.-W. Albrecht, F. Klaus, S. Achim, and S. Arvid, “Flip the Tip: An Automated, High Quality, CostEffective Patch Clamp Screen,” Receptors Channels, vol. Vol 9, no. No 1, pp. 13–17, Dec. 2011, doi: 10.3109/10606820308257. [Google Scholar]
  70. N. Fertig, R. H. Blick, and J. C. Behrends, “Whole cell patch clamp recording performed on a planar glass chip.,” Biophys. J., vol. 82, no. 6, pp. 3056–3062, Jun. 2002. [CrossRef] [PubMed] [Google Scholar]
  71. A. Finkel, A. Wittel, N. Yang, S. Handran, J. Hughes, and J. Costantin, “Population Patch Clamp Improves Data Consistency and Success Rates in the Measurement of Ionic Currents,” J. Biomol. Screen., vol. 11, no. 5, pp. 488–496, Aug. 2006, doi: 10.1177/1087057106288050. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.