Open Access
Issue |
E3S Web Conf.
Volume 271, 2021
2021 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021)
|
|
---|---|---|
Article Number | 04041 | |
Number of page(s) | 4 | |
Section | Environmental Materials and Solid Waste Recycling Technology | |
DOI | https://doi.org/10.1051/e3sconf/202127104041 | |
Published online | 15 June 2021 |
- Novoselovks, Geim AK, Electric field effect in atomically thin carbon films [J]. Science > 2004, 306[5696]: 666–669 [Google Scholar]
- Porwalh, Grasso S. Reecem, et al. Review of graphene-ceramic matrix composites[J]. Advances in Applied Ceramics, 2013, 112[8]:443–454. [CrossRef] [Google Scholar]
- Institute of Metals, Chinese Academy of Sciences, Southeast University Taizhou Graphene Research and Testing Platform, Institute of Semiconductors, Chinese Academy of Sciences, Taizhou Juna New Energy Co., Ltd., Q/LMOICGSOOI_2013 [Google Scholar]
- Selovks, Geim A.K., Electric field effect in atomically thin carbon films [J]. Science > 2004, 306[5696]: 666–669 [CrossRef] [PubMed] [Google Scholar]
- Zhang Jie, Yang Jing, Zhen Weijun, Preparation of poly (lactic acid)/Fe304 loaded azithromycin microspheres and their invitro release characteristics[J]. Progress in fine petrochemical industry, 2012.13(1):51–54 [Google Scholar]
- Tan Lisha, Sun Mingyang, Hu Yunjun, etc. Preparation of functionalized nanoparticles Fe304 magnetic materials and their removal of metal ions in water[J] Chemical Progress. 2013.25[12]:2147–2158 [Google Scholar]
- Kiani M., Hendijani M., et al. Design, Preparation and Characterization of MoO3H-functionalized Fe3O4@SiO2Magnetic Nanocatalyst and Application for the One-pot Multicomponent Reactions. Acta Chim Slov. 2017;64(3):707–713. [CrossRef] [Google Scholar]
- Yazdani F., Fattahi B., Azizi, N. Synthesis of functionalized magnetite nanoparticles to use as live targeting MRI contrast agent. J Magn magn Mater. 2016;406:207–211. [CrossRef] [Google Scholar]
- LiuX, LiL, Liu Y.Q., etal. Ultrasensitive detection of deltamethrin by immune magnetic nanoparticles separation coupled with surface plasmon resonance sensor. Biosens Bioelectron. 2014;59:328–334. [CrossRef] [PubMed] [Google Scholar]
- Xuequnji, Xu Kang, Nanochemistry [J]. Progress in chemistry. 2000. 12(4):431–442 [Google Scholar]
- Xu Ruren Pang Wenqin. Inorganic synthesis and preparative chemistry[M]. Beijing: Higher Education Press, 2001:523–542 [Google Scholar]
- LiLi. LiLi. Preparation and characterization of Fe304 magnetic particles[J]. Chinese Tissue Engineering Research and Clinical Rehabilitation, 2011.15(34):6385–6387. [Google Scholar]
- Rezayan AH, Mosavi M., Kheirjou S., et al. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method, J Magn Magn Mater. 2016;420:210–217. [CrossRef] [Google Scholar]
- Yu L., Hao, G. et al. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil form waste water, J Magn Mater. 2015;394(15);14–21. [CrossRef] [Google Scholar]
- Bagwe RP, Hilliard LR, Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006:22(9):4357–4362. [CrossRef] [PubMed] [Google Scholar]
- Peng X., Liu WS, Shi, H.C. Functionalized magnetic core-shell Fe3O4@sio2 nanoparticles as selectivity- enhanced chemosensor for Hg(II)Dyes Pigments. 2019;91(1):26–32. [Google Scholar]
- Kubo T., Sugita T., Shimose S., et al. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int J Oncol. 2000;17(2):309–315. [PubMed] [Google Scholar]
- Li Yazhai and Wang Hong. Research progress on the preparation of Fe304_Ag magnetic composite nanoparticles and their biomedical applications [J] New Chemical Materials. 2015.43(4):229–231. [Google Scholar]
- Du, J.J., Jing C.Y. Preparation of Thio Modified Fe3O4Ag Magnetic SERS Probe for PAHs Detection and Identification. J Phys Chem C. 2011;115(36);17829–17835. [CrossRef] [Google Scholar]
- Chudasame B., Vala AK, Andhariya N., et al. Enhanced antibacterial activity of Bifunctional Fe3O4-Agcore- shell nanostructures. NanoRes. 2009;2(12):955–965. [Google Scholar]
- Dong X. Zheng, Y. Huang, Y., et al. Synthesis and characterization of multifunctional poly (glycisyl methacrylate) microspheres and their use in cell separation. Anal Biochem. 2010;, 405(2):207–212. [CrossRef] [PubMed] [Google Scholar]
- Yuan Zilong. Zhang Wei, Zhao Weiren, Study on thermomagnetic stability of magnetic fluid for hyperthermia [J]. Journal of Guangdong University oftechnology. 2011., 28(3):62–65 [Google Scholar]
- Ma Xifeng. Tang Chunni, Li Bin. Preparation and properties of sodium Polylactide/nano-Fe304 loaded azithromycin sustained release agent[J]. Chemical and bioengineering., 2014(2):35–37. [Google Scholar]
- Justinr, Chen Biqiong. Characterisation and drug re-lease performance of biodegradable chitosan- graphene oxide nanocomposites [J]. CarbohydrRolym, 2014, 103:70–80. [Google Scholar]
- Schwartzberg A M, Grant C D, Wolcott A., et al. Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate[J]. J Phys Chem:B, 2004, 108(50):19 191–19 197. [CrossRef] [Google Scholar]
- Kuo, C.W., Lai J.J., Wei H.K., et al. Studies of surface- modified gold nanowires inside living cells[J]. Adv Funct Mater, 2007, 17(18): 3707–3714. [CrossRef] [Google Scholar]
- Cai Guangxu, Jiangchangzhong, Ren Feng, etc, Ag@Agi Study on the light absorption and transmission electron microscopy of composite nanoparticles [j] Journal of Wuhan University: Science Edition, 2007, 53(5): 589–592 [Google Scholar]
- MaLellan J M, Xiong Yuejie, Hu Min, et al. Surface- enhanced Raman scattering of 4- mercaptopyridine on thin films of nanoscale Pd cubes, boxes, and cages[J]. Chem Phys Lett, 2006, 417(3): 230–234. [CrossRef] [Google Scholar]
- Shi Weixian, Yang Jun, Wang Tingjie, et al. Surface organic modification of magnetic Fe3O4 particles [J]. Acta physicochemical Sinica, 2001. (17): 507–510 [Google Scholar]
- Zhang Y., Ali, S.F., Dervishi, E., et al. Cytotoxicity effects of graphene and single-wall cabon nanotubes in neural phaeochromocytoma- derived PC12 cells[J]. ACS Nano, 2010, 4(6): 318–3186. [Google Scholar]
- Zhang Y., Nayak TR, Hong H., Cai, W. Graphene:a versatile nanop-latform for biomedical applications[J]. Nanoscale, 2012, 4(13): 3833–3842. [CrossRef] [PubMed] [Google Scholar]
- KrishnamocmChy K., Veerapandian M., Zhang LH, et al. Antibac-terial efi ciency of graphene nanosheets against pathogenic bac-teria via lipid peroxidation[J]. J Phys Chen C, 2012, 116[32]:17280–17287. [CrossRef] [Google Scholar]
- Akhavan O., Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4(10): 5731–5736. [CrossRef] [PubMed] [Google Scholar]
- Lim HN, Huang NM, Loo, C.H. Facile preparation of graphene-bas-ed chitosan films:Enhanced thermal, mechanical and antibacterial properties[J]. J Non-cryst Solids, 2012, 358(3): 525–530. [CrossRef] [Google Scholar]
- Zhu Chen, Shang Xifu, Kong Rong, et al. Study on the mechanism of antibacterial effect of MRSA in human air defense [J] Biological orthopedic materials and clinical research. 2017. (1404): 1.5. [Google Scholar]
- Zhu Chen, Kong Rong, Fang Shiyuan, et al., Differential analysis of the expression of human kan- defensin 3 in artificial joint periprosthetic infection and aseptic loose boundary membrane tissue, Biological Orthopedic Materials and Clinical Research, 2016.13. (02:12–16) [Google Scholar]
- Kulshrestha S., Qayyum S., Khan, A.U. Antibiofilm efficacy of gre-en synthesized graphene oxide-silver nanocomposite Lager-stroemia speciosa floral extract:A comparative strdy on inhibition of grampositive and gram- negative biofilms[J]. Microb Pathog, 2017, 103:167–177. [CrossRef] [PubMed] [Google Scholar]
- Jia Z., Shi Y., Xiong P., et al. From Solution to Biointerface:Graph-ene Self-Assemblies of Varying Lateral Sizes and Surface Proper- ties for Biofilm Control and Osteodifferentiation[J]. ACS Appl Mater Interfaces, 2016, 8(27): 17151–17165. [CrossRef] [PubMed] [Google Scholar]
- Leenaerts O., Partoens B., Peeters, F.M. Water on graphene:hydro-phobicity and dipole moment using density functional theory[J]. Phys Rev B, 2009, 79:235440–235445. [CrossRef] [Google Scholar]
- Valentina Palmieri, Massimitiano Papi Cladio Conti, et al. The future development of bacteria fighting medical devices: the role of graphene oxidel). Exper Review of Medical Devices, 2016, 13(11): 1013–1019. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.