Open Access
Issue
E3S Web Conf.
Volume 273, 2021
XIV International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2021”
Article Number 13010
Number of page(s) 8
Section Biotechnology and Food Technology
DOI https://doi.org/10.1051/e3sconf/202127313010
Published online 22 June 2021
  1. T. Bjarnsholt, APMIS 121, 1–58 (2013) doi:10.1111/apm.12099 [Google Scholar]
  2. A. van Leeuwenhoek, Philos Trans R Soc Lond B Biol Sci 14, 568–74 (1684) [Google Scholar]
  3. R. Koch, Die Aetiologie der Tuberkulose. Berl Klin Wochenschr 15, 221–230 (1882) [Google Scholar]
  4. M.I. Rakovskaya, M.F. Lazareva, Microbiology 30(4), 487–491 (1961) [Google Scholar]
  5. J.W. Costerton, G.G. Geesey, K.J. Cheng, How bacteria stick. Sci Am 238, 86–95 (1978) [Google Scholar]
  6. W.F. McCoy, J.D. Bryers, J. Robbins, J.W. Costerton, Canadian Journal of Microbiology 27(9), 910–917 (1981)doi:10.1139/m81-143 [Google Scholar]
  7. J.W. Costerton, P.S. Stewart, E.P. Greenberg, Science 284, 1318–22 (1999) [Google Scholar]
  8. J.W. Costerton, The Biofilm Primer (Springer, New York, 2007) [Google Scholar]
  9. N. Hoiby, T. Bjarnsholt, M. Givskov, S. Molin, O. Ciofu, Int J Antimicrob Agents 35, 322–32 (2010) [Google Scholar]
  10. A.S. McKee, A.S. McDermid, D.C. Ellwood, P.D. Marsh, Journal of Applied Bacteriology 59(3), 263–275 (1985) doi:10.1111/j.1365-2672.1985.tb01788.x [Google Scholar]
  11. Newton, Cummings, Macfarlane, & Macfarlane, Journal of Applied Microbiology 85(2), 372–380 (1998) doi:10.1046/j.1365-2672.1998.00522.x [CrossRef] [PubMed] [Google Scholar]
  12. C.M. Buswell, Y.M. Herlihy, P.D. Marsh et al., Journal of Applied Microbiology 83(4), 477–484 (1997) doi:10.1046/j.1365-2672.1997.00260.x [Google Scholar]
  13. U.K. Charaf, S.L. Bakich, D.M. Falbo, Biofilms: The Good the Bad and the Ugly (Bioline, Cardiff, 1999) [Google Scholar]
  14. G.A. O’Toole, Journal of Visualized Experiments 47 (2011) doi:10.3791/2437 [Google Scholar]
  15. K.N. Kragh, M. Alhede, M. Rybtke et al., Applied and Environmental Microbiology 84(5) (2017) doi:10.1128/AEM.02264-17 [Google Scholar]
  16. N.V. Seregina, T.V. Chestnova, V.A. Zherebtsova, V.A. Khromushin, Vestn. new medical technologies XV(3), 175–177 (2008) [Google Scholar]
  17. K.N. Kragh, M. Alhede, M. Rybtke et al., Applied and Environmental Microbiology, 84(5) (2017) doi:10.1128/AEM.02264-17 [Google Scholar]
  18. K.N. Kragh, M. Alhede, L. Kvich, T. Bjarnsholt, Biofilm, 100006 (2019) doi:10.1016/j.bioflm.2019.100006 [CrossRef] [PubMed] [Google Scholar]
  19. H. Ceri, M.E. Olson, C. Stremick et al., Journal of Clinical Microbiology 37(6), 1771–1776 (1999) doi:10.1128/JCM.37.6.1771-1776.1999 [CrossRef] [PubMed] [Google Scholar]
  20. J. Azeredo, N.F. Azevedo, R. Briandet, et al., Critical Reviews in Microbiology 43(3), 313–351 (2016) doi:10.1080/1040841x.2016.1208146 [CrossRef] [PubMed] [Google Scholar]
  21. R.G. Ledder, T. Madhwani, P.K. Sreenivasan et al., Journal of Medical Microbiology 58(4), 482–491 (2009) doi:10.1099/jmm.0.006601-0 [CrossRef] [PubMed] [Google Scholar]
  22. W.F. McCoy, J.D. Bryers, J. Robbins, J.W. Costerton, Canadian Journal of Microbiology 27(9), 910–917 (1981) doi:10.1139/m81-143 [Google Scholar]
  23. J.C. Nickel, I. Ruseska, J.B. Wright, J.W. Costerton, Antimicrobial Agents and Chemotherapy 27(4), 619–624 (1985) doi:10.1128/aac.27.4.619 [CrossRef] [PubMed] [Google Scholar]
  24. D.M. Goeres, M.A. Hamilton, N.A. Beck et al., Nature Protocols 4(5), 783–788 (2009) doi:10.1038/nprot.2009.59 [CrossRef] [PubMed] [Google Scholar]
  25. R.M. Donlan, J.A. Piede, C.D. Heyes et al., Applied and Environmental Microbiology 70(8), 4980–4988 (2004) doi:10.1128/aem.70.8.4980-4988.2004 [CrossRef] [PubMed] [Google Scholar]
  26. ASTM E2562-07, Standard Test Method for Quantification of Pseudomonas aeruginosa Biofilm Grown with High Shear and Continuous Flow using CDC Biofilm Reactor (ASTM International, West Conshohocken, PA, 2007) www.astm.org [Google Scholar]
  27. D.M. Goeres, Microbiology 151(3), 757–762 (2005) doi:10.1099/mic.0.27709-0 [CrossRef] [PubMed] [Google Scholar]
  28. T. Tolker-Nielsen, C. Sternberg, Pseudomonas Methods and Protocols, 615–629 (2014) doi:10.1007/978-1-4939-0473-0_47 [Google Scholar]
  29. V. Janakiraman, D. Englert, A. Jayaraman, H. Baskaran, Annals of Biomedical Engineering 37(6), 1206–1216 (2009) doi:10.1007/s10439-009-9671-8 [CrossRef] [PubMed] [Google Scholar]
  30. J.-H. Lee, J.B. Kaplan, W.Y. Lee, Biomedical Microdevices 10(4), 489–498 (2008) doi:10.1007/s10544-007-9157-0 [CrossRef] [PubMed] [Google Scholar]
  31. J. Terry, S. Neethirajan, Journal of Nanobiotechnology 12(1), 1 (2014) doi:10.1186/1477-3155-12-1 [CrossRef] [PubMed] [Google Scholar]
  32. M.T. Meyer, V. Roy, W.E. Bentley, R. Ghodssi, Journal of Micromechanics and Microengineering 21(5), 054023 (2011) doi:10.1088/0960-1317/21/5/054023 [Google Scholar]
  33. M.R. Benoit, C.G. Conant, C. Ionescu-Zanetti et al., Applied and Environmental Microbiology 76(13), 4136–4142 (2010) doi:10.1128/aem.03065-09 [CrossRef] [PubMed] [Google Scholar]
  34. W. Aljohani, M.W. Ullah, X. Zhang, G. Yang, International Journal of Biological Macromolecules 107, 261–275 (2018) doi:10.1016/j.ijbiomac.2017.08.171 [CrossRef] [PubMed] [Google Scholar]
  35. Q. Yan, H. Dong, J. Su, et al., Engineering (2018) doi:10.1016/j.eng.2018.07.021 [Google Scholar]
  36. L. Moroni, T. Boland, J.A. Burdick et al., Trends in Biotechnology 36(4), 384–402 (2017) doi:10.1016/j.tibtech.2017.10.015 [CrossRef] [PubMed] [Google Scholar]
  37. J.L. Connell, E.T. Ritschdorff, M. Whiteley, J.B. Shear, Proceedings of the National Academy of Sciences 110(46), 18380–18385 (2013) doi:10.1073/pnas.1309729110 [Google Scholar]
  38. M. Schaffner, P.A. Rühs, F. Coulter, S. Kilcher, A.R. Studart, Science Advances 3(12), eaao6804 (2017)doi:10.1126/sciadv.aao6804 [CrossRef] [PubMed] [Google Scholar]
  39. B.A.E. Lehner, D.T. Schmieden, A.S. Meyer, ACS Synthetic Biology 6(7), 1124–1130 (2017) doi:10.1021/acssynbio.6b00395 [CrossRef] [PubMed] [Google Scholar]
  40. L.M. González, N. Mukhitov, C.A. Voigt, Nat Chem Biol 16, 126–133 (2020). https://doi.org/10.1038/s41589-019-0412-5 [CrossRef] [PubMed] [Google Scholar]
  41. D.T. Schmieden, S.J. Basalo Vázquez, H. Sangüesa et al., ACS Synthetic Biology 7(5), 1328–1337 (2018) doi:10.1021/acssynbio.7b00424 [CrossRef] [PubMed] [Google Scholar]
  42. E.M. Spiesz, K. Yu, B.A.E. Lehner et al., Journal of Visualized Experiments 147 (2019) doi:10.3791/59477 https://doi.org/10.3791/59477 [Google Scholar]
  43. E. Ning, G. Turnbull, J. Clarke et al., Biofabrication (2019) doi:10.1088/1758-5090/ab37a0 [Google Scholar]
  44. J. Huang, S. Liu, C. Zhang, et al., Nature Chemical Biology (2018) doi:10.1038/s41589-018-0169-2 [Google Scholar]
  45. S. Kyle, Trends in Biotechnology 36(4), 340–341 (2018) doi:10.1016/j.tibtech.2018.01.010 [CrossRef] [PubMed] [Google Scholar]
  46. M. Rabbani, Y. Dalman, Bioprinting e00099 (2020) doi:10.1016/j.bprint.2020.e00099 [Google Scholar]
  47. Y. Huang, A. Xia, G. Yang, F. Jin, ACS Synthetic Biology 7(5), 1195–1200 (2018) doi:10.1021/acssynbio.8b00003 [CrossRef] [PubMed] [Google Scholar]
  48. E. Saygili, A.A. Dogan-Gurbuz, O. Yesil-Celiktas, M.S. Draz, Bioprinting e00071 (2019) doi:10.1016/j.bprint.2019.e00071 [Google Scholar]
  49. M.J. Angelaalincy, R. Navanietha Krishnaraj, G. Shakambari et al., Frontiers in Energy Research 6 (2018) doi:10.3389/fenrg.2018.00063 [CrossRef] [PubMed] [Google Scholar]
  50. A. Di Biase, M.S. Kowalski, T.R. Devlin, J.A. Oleszkiewicz, Journal of Environmental Management 247, 849–866 (2019) doi:10.1016/j.jenvman.2019.06.053 [CrossRef] [PubMed] [Google Scholar]
  51. H. Huang, C. Peng, P. Peng et al., Applied Microbiology and Biotechnology (2018) doi:10.1007/s00253-018-9511-6 [Google Scholar]
  52. R. Carafa, N.E. Lorenzo, J.S. Llopart, V. Kumar, M. Schuhmacher, Aquatic Toxicology 231, 105732 (2021) DOI: https://doi.org/10.1016/j.aquatox.2020.105732 [Google Scholar]
  53. H. Yang, M. Zhou, M. Liu et al., Biotechnology Letters 37(12), 2357–2364 (2015) doi:10.1007/s10529-015-1929-7 [CrossRef] [PubMed] [Google Scholar]
  54. X. Qi, P.-P. Liu, P. Liang et al., Biosensors and Bioelectronics, 111500 (2019) doi:10.1016/j.bios.2019.111500 [Google Scholar]
  55. M.B. Cassidy, H. Lee, J.T. Trevors, Journal of Industrial Microbiology 16(2), 79–101 (1996) doi:10.1007/bf01570068 [Google Scholar]
  56. S. Balasubramanian, M.-E. Aubin-Tam, A.S. Meyer, ACS Synthetic Biology 8(7), 1564–1567 (2019) doi:10.1021/acssynbio.9b00192 [CrossRef] [PubMed] [Google Scholar]
  57. A. Majerle, D.T. Schmieden, R. Jerala, A.S. Meyer, Biochemistry (2019) doi:10.1021/acs.biochem.8b00922 [Google Scholar]
  58. M. Mukherjee, B. Cao, Microbial Biotechnology (2020) doi:10.1111/1751-7915.13715 [Google Scholar]
  59. K.L. Rana, D. Kour, A.N. Yadav et al., Microbial Biofilms, 221–265 (2020) doi:10.1016/B978-0-444-64279-0.00016-5 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.