Open Access
Issue |
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 6 | |
Section | Bridges, Roads, and Tunnels | |
DOI | https://doi.org/10.1051/e3sconf/202127402006 | |
Published online | 18 June 2021 |
- M. Bocian, J.H.G. Macdonald, J.F. Burn. Biomechanically Inspired Modeling of Pedestrian-Induced Vertical Self-Excited Forces, J. Bridg. Eng. 18 (12), 1336–1346 (2013). DOI: 10.1061/(asce)be.1943-5592.0000490. [CrossRef] [Google Scholar]
- S.P. Carroll, J.S. Owen, M.F.M. Hussein. Modelling crowd-bridge dynamic interaction with a discretely defined crowd, J. Sound Vib. 331 (11), 2685–2709 (2012). DOI: 10.1016/j.jsv.2012.01.025. [CrossRef] [Google Scholar]
- J.W. Qin, S.S. Law, Q.S. Yang, N. Yang. Pedestrian-bridge dynamic interaction, including human participation, J. Sound Vib. 332 (4), 1107–1124 (2013). DOI: 10.1016/j.jsv.2012.09.021. [CrossRef] [Google Scholar]
- J. Hu, X. Bian, J. Jiang. Critical Velocity of High-speed Train Running on Soft Soil and Induced Dynamic Soil Response, in Procedia Engineering 143, 1034–1042 (2016). DOI: 10.1016/j.proeng.2016.06.102. [CrossRef] [Google Scholar]
- E. Ntotsios. Modelling of Train Induced Vibration, in Stephenson Conference Research for Railways 2015, 2015-April, 153–162 (2015). [Google Scholar]
- E. Ahmadi, C. Caprani, S. Zivanovic, A. Heidarpour. Vertical ground reaction forces on rigid and vibrating surfaces for vibration serviceability assessment of structures, Eng. Struct. 172, 723–738 (2018). DOI: 10.1016/j.engstruct.2018.06.059. [CrossRef] [Google Scholar]
- S. Qin, Y.L. Zhou, J. Kang. Footbridge Serviceability Analysis. From System Identification to Tuned Mass Damper Implementation, KSCE J. Civ. Eng. 23 (2), 754–762 (2019). DOI: 10.1007/s12205-018-0985-7. [CrossRef] [Google Scholar]
- D. Wang, C. Wu, Y. Zhang, S. Li. Study on vertical vibration control of long-span steel footbridge with tuned mass dampers under pedestrian excitation, J. Constr. Steel Res. 154, 84–98 (2019). DOI: 10.1016/j.jcsr.2018.11.021. [CrossRef] [Google Scholar]
- L.F.F. Miguel, L.F. Miguel, R.H. Lopez. A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges, Optim. Eng. 16 (3), 633–661 (2015). DOI: 10.1007/s11081-014-9269-3. [CrossRef] [Google Scholar]
- H. Bachmann, and W. Ammann. Vibrations in structures induced by man and machines. Structural Engineering Document 3, International Association for Bridge and Structural Engineering, Zu'rich 2 (3), (1987). [Google Scholar]
- D.E. Newland. Pedestrian excitation of bridges, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 218 (5), 477–492 (2004). DOI: 10.1243/095440604323052274. [CrossRef] [Google Scholar]
- Y. Fujino, B.M. Pacheco, S.-I. Nakamura, P. Warnitchai. Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge, Earthquake Engng Struct. Dynamics 22, 741–758 (1993). DOI: 10.1002/eqe.4290220902. [CrossRef] [Google Scholar]
- G. Seidl, W. Lorenc. Innovative solutions in bridge construction with composite dowel strips, Stahlbau 87 (6), 547–554 (2018). DOI: 10.1002/stab.201810617. [CrossRef] [Google Scholar]
- M. Classen, J. Hegger. Pry-out of composite dowels in cracked concrete - Experimental investigation, Stahlbau 86 (3), 256–268 (2017). DOI: 10.1002/stab.201710470. [CrossRef] [Google Scholar]
- J. Springer, H. Reuke, K. Wolters, M. Kopp. Special features of the composite structure of the Car Park Coulinstrafie in Wiesbaden, Germany, Stahlbau 87 (7), 695–703 (2018). DOI: 10.1002/stab.201810625. [CrossRef] [Google Scholar]
- M. Kozuch, W. Lorenc. The behaviour of clothoid-shaped composite dowels: Experimental and numerical investigations, J. Constr. Steel Res. 167 (2020). DOI: 10.1016/j.jcsr.2020.105962. [CrossRef] [Google Scholar]
- P. Lacki, P. Kasza, and K. Adamus. Optimization of composite dowels shape in steelconcrete composite floor, Compos. Struct. 222, (2019). DOI: 10.1016/j.compstruct.2019.110902. [CrossRef] [Google Scholar]
- M. Kozuch, W. Lorenc. Stress concentration factors of shear connection by composite dowels with MCL shape, Arch. Civ. Mech. Eng., 19 (1), 32–46 (2019). DOI: 10.1016/j.acme.2018.08.006. [CrossRef] [Google Scholar]
- A. Kozma, C. Odenbreit, M.V. Braun, M. Veljkovic, M.P. Nijgh. Push-out tests on demountable shear connectors of steel-concrete composite structures, Structures 21, 4554 (2019). DOI: 10.1016/j.istruc.2019.05.011. [CrossRef] [Google Scholar]
- A.N. Ivanov, A.N. Yashnov. Improving the construction and calculation methods of span structures of bridges with load-bearing elements made of composite materials, Scientific problems of transport in Siberia and the Far East 1–2, 142–146 (2014). [Google Scholar]
- T. Bogdan, M. Chrzanowski, C. Odenbreit. Mega columns with several reinforced steel profiles - Experimental and numerical investigations, Structures 21, 3–21 (2019). DOI: 10.1016/j.istruc.2019.06.024. [CrossRef] [Google Scholar]
- G. Ranzi, A. Zona. A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component, Eng. Struct. 29 (11), 3026–3041 (2007). DOI: 10.1016/j.engstruct.2007.02.007. [CrossRef] [Google Scholar]
- G. Ranzi, A. Zona. Finite element models for nonlinear analysis of steelconcrete composite beams with partial interaction in combined bending and shear, Finite Elem. Anal. Des. 43 (2), 98–118 (2011). DOI: 10.1016/j.finel.2010.09.006. [Google Scholar]
- C.G. Chiorean, S.M. Buru. Practical nonlinear inelastic analysis method of composite steel-concrete beams with partial composite action, Eng. Struct. 134 (1), 74–106 (2017). DOI: 10.1016/j.engstruct.2016.12.017. [CrossRef] [Google Scholar]
- K. Misiurek, P. Sniady. Vibrations of sandwich beam due to a moving force, Compos. Struct. 104, 85–93 (2013). DOI: 10.1016/j.compstruct.2013.04.007. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.