Open Access
Issue |
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
|
|
---|---|---|
Article Number | 04013 | |
Number of page(s) | 7 | |
Section | Building Materials and Products | |
DOI | https://doi.org/10.1051/e3sconf/202127404013 | |
Published online | 18 June 2021 |
- G.A. Sabirova, N.R. Galavetdinov, R.R. Safin. Production of composite materials based on biodegradable components, Actual problems of the forest complex 55, 181–184 (2019). DOI: 10.1088/1742-6596/1399/4/044117. [Google Scholar]
- A.K. Safiullina, R.R. Safin, S.R. Mukhametzyanov. Technology of pretreatment of wood filler with ozone in the production of composite materials, Actual problems of the forest complex 57, 60–63 (2020). [Google Scholar]
- B. McAdam, M. Brennan Fournet, P. McDonald, M. Mojicevic. Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical Characteristics, Polymers 12, 2908 (2020). DOI: 10.3390/polym12122908. [CrossRef] [Google Scholar]
- K. Shantini, A.R.M. Yahya, A.A. Amirul. Influence of Feeding and Controlled Dissolved Oxygen Level on the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA2-4 and Its Characterization. Appl Biochem Biotechnol 176, 1315–1334 (2015). DOI: 10.1007/s12010-015-1648-5. [CrossRef] [PubMed] [Google Scholar]
- Evi Triwulandari, Muhammad Ghozali, Dewi Sondari, Melati Septiyanti, Yulianti Sampora, Yenny Meliana, Sri Fahmiati, Witta Kartika Restu, Agus Haryono. Effect of lignin on mechanical, biodegradability, morphology, and thermal properties of polypropylene/polylactic acid/lignin biocomposite, Plastics, Rubber and Composites 48:2, 82–92 (2019). DOI: 10.1080/14658011.2018.1562746. [CrossRef] [Google Scholar]
- Ariyanti Sarwono, Zakaria Man, M. Azmi Bustam, Duvvuri Subbarao, AlaminIdris, Nawshad Muhammad, Amir Sada Khan, Zahoor Ullah. Swelling mechanism of ureacross-linked starch - lignin films in water, Environmental Technology 39:12, 1522–1532 (2018). DOI: 10.1080/09593330.2017.1332108. [CrossRef] [PubMed] [Google Scholar]
- Vebi Mimini, Eva Sykacek, Sharifah Nurul, Ain Syed Hashim, Julian Holzweber, Hubert Hettegger, Karin Fackler, Antje Potthast, Norbert Mundigler, Thomas Rosenau. Compatibility of Kraft Lignin, Organosolv Lignin and Lignosulfonate With PLA in 3D Printing, Journalof Wood Chemistry and Technology 39:1, 14–30 (2019). DOI: 10.1080/02773813.2018.1488875. [CrossRef] [Google Scholar]
- Khaled F. El Nemr, Hamdi R. Mohamed, Magdy A. Ali, Rasha M. Fathy, Abdelghaffar S. Dhmees. Polyvinyl alcohol/gelatin irradiated blends filled by lignin asgreen filler for antimicrobial packaging materials, International Journal of Environmental Analytical Chemistry 100:14, 1578–1602 (2020). DOI: 10.1080/03067319.2019.1657108. [CrossRef] [Google Scholar]
- O.A.T. Dias, D.R. Negräo, R.C. Silva, C.S. Funari, I. Cesarino, A.L. Leao. Studies of lignin as reinforcement for plastics composites, Molecular Crystals and Liquid Crystals 628:1, 72–78 (2016). DOI: 10.1080/15421406.2015.1137677. [CrossRef] [Google Scholar]
- Rajendra Kumar Singla, Saurindra Nath Maiti, Anup Kumar Ghosh. Crystallization, Morphological, and Mechanical Response of Poly(Lactic Acid)/Lignin-BasedBiodegradable Composites, Polymer-Plastics Technology and Engineering 55:5, 475–485 (2016). DOI: 10.1080/03602559.2015.1098688. [CrossRef] [Google Scholar]
- Shaorong Lu, Shanrong Li, Jinhong Yu, Dong Guo, Rihua Ling, Bin Huang. The effect of hyperbranched polymer lubricant as a compatibilizer on the structure andproperties of lignin/polypropylene composites, Wood Material Science & Engineering 8:3, 159–165 (2013). DOI: 10.1080/17480272.2013.769464. [CrossRef] [Google Scholar]
- J. Batog, R. Kozlowski, A. Przepiera. Lignocellulosic CompositesBonded by Enzymatic Oxidation of Lignin, Molecular Crystals and Liquid Crystals 484:1, 35–42 (2008). DOI: 10.1080/15421400801903387. [CrossRef] [Google Scholar]
- Beata Strzemiecka, Lukasz Klapiszewski, Danuta Matykiewicz, Adam Voelkel, Teofil Jesionowski. Functional lignin-SiO2 hybrids as potential fillers forphenolic binders, Journal of Adhesion Science and Technology 30:10, 1031–1048 (2016). DOI: 10.1080/01694243.2015.1115602. [CrossRef] [Google Scholar]
- Otávio Augusto Titton Dias, Djanira Rodrigues Negräo, Daniele Fernanda Chiarelli Gonçalves, Ivana Cesarino, Alcides Lopes Leäo. Recent approaches andfuturetrends for lignin-based materials, Molecular Crystals and Liquid Crystals 655:1, 204–223 (2017). DOI: 10.1080/15421406.2017.1360713. [CrossRef] [Google Scholar]
- Basheer Aaliya, Kappat Valiyapeediyekkal Sunooj, Maximilian Lackner. Biopolymer composites: a review, International Journal of Biobased Plastics 3:1, 40–84 (2021). DOI: 10.1080/24759651.2021.1881214. [CrossRef] [Google Scholar]
- H. Mohit, V. Arul Mozhi Selvan. A comprehensive review on surfacemodification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymerbased composites, Composite Interfaces 25:5-7, 629–667 (2018). DOI: 10.1080/09276440.2018.1444832. [CrossRef] [Google Scholar]
- G.F. Ilalova, K.V. Saerova, R.R. Safin, S.R. Mukhametzyanov, A.H. Safiullina. Investigation of high-temperature hydrolysis of pine sawdust with sulfurous acid in order to increase the yield of reducing substance, Wood industry 3, 71–80 (2020). [Google Scholar]
- K.V. Saerova, G.F. Ilalova, R.R. Safin, S.R. Mukhametzyanov, A.H. Safiullina. High-Temperature hydrolysis of pine sawdust with sulfurous acid to detect the concentration of reducing substances, Actual problems of the forest complex 57, 54–59 (2020). [Google Scholar]
- Martin Boruvka, Lubos Behalek, Petr Lenfeld, Chakaphan Ngaowthong, Miroslava Pechociakova. Structure-related properties of bionanocomposites based onpoly(lactic acid), cellulose nanocrystals and organic impact modifier, Materials Technology 34:3, 143–156 (2019). DOI: 10.1080/10667857.2018.1540332. [CrossRef] [Google Scholar]
- G.A. Talipova, N.R. Galyavetdinov. Development of biodegradable composite materials made ofpolymer and vegetable filler, Actual problems of biology and ecology. Materials of the international scientific and practical conference, 235–240 (2019). [Google Scholar]
- N.R. Galavetdinov, G.A. Sabirova, R.R. Safin, M.F. Galikhanov. Research of biodegradable wood-filled composite materials based on polylactide, Wood industry 3, 61–68 (2019). [Google Scholar]
- Ali I., Jamil N. Enhanced biosynthesis of poly(3-hydroxybutyrate) from potato starch by Bacillus cereus strain 64-INS in a laboratory-scale fermenter, Prep Biochem Biotechnol 44 (8), 822–833 (2014). DOI: 10.1080/10826068.2013.867876. [CrossRef] [PubMed] [Google Scholar]
- M. Narodoslawsky, H.S.K. Shazad, R. Kollmann. LCA ofPHA Production-Identifying the Ecological Potential of Bio-Plastic. Chem., Bio. Chem. Eng. Q. 29, 299–305 (2015). DOI: 10.15255/CABEQ.2014.2262. [CrossRef] [Google Scholar]
- N.R. Galyavetdinov, G.A. Talipova, R.R. Safin. Study of the Destructive Properties of Biodegradable Wood-Filled Composite Material, Materials Science Forum 992, 290–295 (2020). DOI: 10.4028/www.scientific.net/MSF.992.290. [CrossRef] [Google Scholar]
- S.R. Mukhametzyanov, R.R. Safin, N.R. Galyavetdinov. Improvement of Composite Filaments for Extrusive 3D Printing, Materials Science Forum 989, 827–832 (2020). DOI: 10.4028/www.scientific.net/MSF.989.827. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.