Open Access
Issue
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
Article Number 06001
Number of page(s) 9
Section Construction Technology and Organization
DOI https://doi.org/10.1051/e3sconf/202127406001
Published online 18 June 2021
  1. A.A. Folomeev. Reduction of material consumption of reinforced concrete structures. M.: Stroyizdat, 66 (1974). [Google Scholar]
  2. A.A. Voevodin. Prestressed systems of structural elements. M.: Stroyizdat, 304 (1989). [Google Scholar]
  3. I.A. Ivanov. Light weight concrete on artificial porous aggregates. M.: Stroyizdat, 182 (1993). [Google Scholar]
  4. S.A. Bugaevskiy. Modern lightweight reinforced concrete floors with the use of nonremovable void-form liners, Naychniy vestnik stroitelstva 692, 74–75 (2015). [Google Scholar]
  5. AirDeck System // airdeck.com: official site AirDeck System. 2013. URL: http://www.airdeck.com/ (reference date: 16.03.2018). [Google Scholar]
  6. Tina Lai. Structural Behavior of BubbleDeck Slabs and Their Application to Lightweight Bridge Decks, International Journal of Civil Engineering and Technology 45, 54 (2017). [Google Scholar]
  7. Mike Mota. Voided two-way flat plate slabs, Structure magazine 7, 7 (2009). [Google Scholar]
  8. A.G. Churakov. Biaxial hollow slab with innovative types of voids, Stroitelstvo unikalnih zdaniy I soorujeniy 6 (21), 70–88 (2014). [Google Scholar]
  9. A.H. Karapetyan. Cobiax technology: cost - effective- environmentally friendly - fast, Vestnik Rossiyskogo soyuza stroiteleiy 2, 20–21 (2013). [Google Scholar]
  10. Cobiax Technologies AG // cobiax.com: official site Cobiax. 2014. URL: http://www.cobiax.com/startseite (reference date: 17.03.18). [Google Scholar]
  11. DALIFORMgroup // daliform.com: official site DALIFORM. 2014. URL: http://ru.daliform.com/prodotti/categorie.php (reference date: 18.03.18). [Google Scholar]
  12. Beeplate System // beeplate.com : official site Beeplate System. 2014. URL: http://www.beeplate.com (reference date: 18.03.18). [Google Scholar]
  13. Use the Insert Citation button to add citations to this document. [Google Scholar]
  14. Production technology of lightweight reinforced concrete: patent 69346 of the Ukraine, X 201112222 ; decl. 18.10.2011 ; publ. 25.04.2012, Bull. in X 8. 1 p. [Google Scholar]
  15. M. Khaliullin, A. Dimieva. Composite gypsum binder under introducing thermally activated clay as a pozzolanic component and adding ground limestone, IOP Conference Series: Materials Science and Engineering (2020). DOI: 10.1088/1757-899X/890/1/012093. [Google Scholar]
  16. M. Khaliullin, R. Rakhimov, I. Faizrakhmanov. The influence of thermally activated clay additives on the properties of composite gypsum binder, ZKG Zement - kalk - gips Int. Bauverlag BV GmbH. Gutersloh, 58–63 (2017). [Google Scholar]
  17. P.E. Bulanov, E.U. Ermilova, L.F. Mavliev. Structure and mineral composition of soilcement with complex additive, Mag. Civ. Eng. 83, 38–48 (2018). DOI: 10.18720/MCE.83.4. [Google Scholar]
  18. E. Ermilova, Z. Kamalova, R. Ravil. Influence of clay mineral composition on properties of blended portland cement with complex additives of clays and carbonates, IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing 890, (2020). DOI: 10.1088/1757-899X/890/1/012087. [Google Scholar]
  19. V. Khozin, O. Khokhryakov, R. Nizamov. A «carbon footprint» of low water demand cements and cement-based concrete, IOP Conference Series: Materials Science and Engineering, (2020). DOI: 10.1088/1757-899X/890/1/012105. [Google Scholar]
  20. N. Krasinikova, S. Stepanov, D. Makarov. Cement stone, modified by chemical water treatment sludge, IOP Conference Series: Materials Science and Engineering 890, (2020). DOI: 10.1088/1757-899X/890/1/012099. [CrossRef] [Google Scholar]
  21. S.I. Pimenov. Heavyweight concrete based on hydromechanochemically activated binder, IOP Conference Series: Materials Science and Engineering 890, (2020). DOI: 10.1088/1757-899X/890/1/012098. [CrossRef] [Google Scholar]
  22. S. Stepanov, N. Krasinikova, D. Makarov. Cement stone, modified by galvanic sludge, IOP Conference Series: Materials Science and Engineering 890, (2020). DOI: 10.1088/1757-899X/890/1/012086. [Google Scholar]
  23. E.A. Vdovin, V.F. Stroganov. Modification of cement-bound mixtures with sodium formate additives for the construction of pavement bases at low air temperatures, IOP Conference Series: Materials Science and Engineering 786, (2020). DOI: 10.1088/1757-899X/786/1/012065. [CrossRef] [Google Scholar]
  24. L. Mavliev, E. Vdovin. Structure of road soil cement compositions modified by complex additive based on organosilicon compounds and electrolytes, E3S Web of Conferences (2019). DOI: 10.1051/e3sconf/201914002016. [Google Scholar]
  25. D. Smirnov, E. Yagund, F. Zamaliev, V. Brodneva. Estimation of impacts of cellulosic admixtures on sma features, IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing 890, (2020). DOI: 10.1088/1757-899X/890/1/012102. [Google Scholar]
  26. R. Mukhametrakhimov, I. Aliullova. Construction technology and quality control of expansion joints with rubber compensators, E3S Web Conf. 264, 02066 (2021). DOI: 10.1051/e3sconf/202126402066. [CrossRef] [Google Scholar]
  27. R. Mukhametrakhimov, A. Galautdinov, A. Panchenko, T. Gorbunova. Improving the quality of installation of preinsulated pipelines of heat supply systems, E3S Web Conf. 264, 02068 (2021). DOI: 10.1051/e3sconf/202126402068. [CrossRef] [Google Scholar]
  28. R.K. Mukhametrakhimov, A.A. Panchenko. Features of technology of installation and quality control of pipelines with polyfoam polyethylene insulation, Izv. KGASU 2, 246–254 (2018). [Google Scholar]
  29. Mukhametrakhimov, R.K., Aliullova, I.R.: Improvement of the quality control system for expansion joints with rubber compensators during the repair of bridge constructions. Izv. KGASU. 3, 47–55 (2020). [Google Scholar]
  30. R.K. Mukhametrakhimov, L.V. Lukmanova, M.I. Kamaliev. Features of the quality control system of the installation of hinged ventilated facade systems, Izv. KGASU 1, 234–240 (2018). [Google Scholar]
  31. A. Khuzin, A. Sharavina. Ways to improve the quality of monolithic reinforced concrete structures, IOP Conference Series: Materials Science and Engineering 890, (2020). DOI: 10.1088/1757-899X/890/1/012127. [CrossRef] [Google Scholar]
  32. Production technology of lightweight reinforced concrete: patent 75556 of the Ukraine, X 201204865; decl. 18.04.2012; publ. 10.12.2012, Bull. in X 23. 2 p. [Google Scholar]
  33. Production technology of multi-cavity reinforced concrete monolithic plate: patent 65670 of the Ukraine, X> 20023032057; decl. 07.03.2003; publ. 15.12.2003, Bull. in X> 12. 1 p. [Google Scholar]
  34. V.S. Izotov, R.K. Mukhametrakhimov, L.S. Sabitov. Experimental studies of the efficiency of dispersed reinforcement of the stretched zone of concrete bending elements, Nauchniy gurnal stroitelstva i arhitekturi 1, 119–125 (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.