Open Access
Issue
E3S Web Conf.
Volume 274, 2021
2nd International Scientific Conference on Socio-Technical Construction and Civil Engineering (STCCE – 2021)
Article Number 09009
Number of page(s) 11
Section Innovative and Smart Technologies in Architectural and Construction Education
DOI https://doi.org/10.1051/e3sconf/202127409009
Published online 18 June 2021
  1. S. Bhooshan. Parametric design thinking: A case-study of practice-embedded architectural research, Design Studies 52, (2017). DOI: 10.1016/j.destud.2017.05.003. [Google Scholar]
  2. J.E. Harding, P. Shepherd. Meta-parametric design, Design Studies 52, (2017). DOI: 10.1016/j.destud.2016.09.005. [Google Scholar]
  3. S. Dellantonio, L. Pastore. Semantic competence from the inside: Conceptual architecture and composition, Internal Perception, (2017). DOI: 10.1007/978-3-662-55763-1. [CrossRef] [Google Scholar]
  4. M. Tsiamis, A. Oliva, M. Calvano. Algorithmic design and analysis of architectural origami, Nexus Network Journal 20 (1), (2017). DOI: 10.1007/s00004-017-0361-9. [Google Scholar]
  5. R. Oxman. Parametric design thinking. Design Studies 52, (2017). DOI: 10.1016/j.destud.2017.07.001. [Google Scholar]
  6. R. Oxman. The role of the image in digital design, Processing the image versus imaging process, (2016). DOI: 10.1007/978-3-319-56466-1_6. [Google Scholar]
  7. P. Bellew. Environmental design from the intuitive to parametric, Architectural Design 91 (2), (2021). DOI: 10.1002/ad.2677. [Google Scholar]
  8. J.M. Rees. Surform: An architectural vocabulary of morphogenesis, Footprint 22, (2018). DOI: 10.7480/footprint.12.1.1751. [Google Scholar]
  9. B. Cantrell, A. Mekies. Codify: Parametric and computational design in landscape architecture. Codify. Parametric and computational design in landscape architecture, (2018). DOI: 10.4324/9781315647791. [CrossRef] [Google Scholar]
  10. D. Fletcher. The parametric park. Codify: Parametric and computational design in landscape architecture, (2018). DOI: 10.4324/9781315647791. [Google Scholar]
  11. B.S. Jovic, A.D. Mitic. Exploration of nature-based biomimetic approach in landscape architectural design: Parametric study of candelabra model design, Visual Computing for Industry, Biomedicine, and Art 3 (1), (2020). DOI: 10.1186/s42492-020-00060-y. [CrossRef] [Google Scholar]
  12. D. Dollens. Architecture as nature: A biodigital hypothesis, Leonardo 42 (5), (2009). DOI: 10.1162/leon.2009.42.5.412. [CrossRef] [Google Scholar]
  13. J. Alcaide-Marzal, J.A. Diego-Mas, G. Acosta-Zazueta. A 3D shape generative method for aesthetic product design, Design Studies 66, (2020). DOI: 10.1016/j.destud. 2019.11.003. [Google Scholar]
  14. O. Ardavani. Alternatives to artifcial lighting: Varying patterns of biolight in architecture ArchiDOCT 8 (1), (2020). [Google Scholar]
  15. Metaphorical parametric model for brand mark design: Towards a universal model of computational visual communication design. Paper presented at the Proceedings - DMSVIVA 2019: 25th International DMS Conference on Visualization and Visual Languages, (2019). DOI: 10.18293/DMSVIVA2019-015. [Google Scholar]
  16. G. Rodono, E. Naboni, V. Sapienza, F. Cucchi, G. Macrelli. Simulation workflow for parametric optimization of outdoor comfort-based origami shelter, Journal of Architectural Engineering 26 (3), (2020). DOI: 10.1061/(ASCE)AE.1943-5568.0000410. [Google Scholar]
  17. A. Goldbach, K. Bletzinger. CAD-integrated parametric design cycle for structural membranes, Journal of the International Association for Shell and Spatial Structures 60 (4), (2019). DOI: 10.20898/j.iass.2019.202.024. [Google Scholar]
  18. F.U. Sjarifuddin. Adaptive decorative building skin. Paper presented at the CAADRIA 2016, 21st International Conference on Computer-Aided Architectural Design Research in Asia - Living Systems and Micro-Utopias: Towards Continuous Designing, (2016). [Google Scholar]
  19. G.M. Valenti, C.El. Khoury. Let’s join: A pavilion inspired by the weaire and phelan space tessellation, (2021). DOI: 10.1007/s00004-020-00544-7. [Google Scholar]
  20. R. Woodbury, A. Mohiuddin, M. Cichy, V. Mueller. Interactive design galleries: A general approach to interacting with design alternatives, Design Studies 52, (2017). DOI: 10.1016Zj.destud.2017.05.00L [Google Scholar]
  21. J. Wu. Folding helical triangle tessellations into light art, Journal of Mathematics and Arts 12 (1), (2018). DOI: 10.1080/17513472.2017.1388941. [Google Scholar]
  22. G. Necipogglu. The TopkapiScroll: Geometry and Ornament in Islamic Architecture (Getty Center Publication), (1995). [Google Scholar]
  23. A. Agirbas, G. Yildiz. Origin of irregular star polygons in ground projection plans of muqarnas, Nexus Network Journal, (2020). DOI: 10.1007/s00004-020-00516-x. [Google Scholar]
  24. A. Agirbas. Algorithmic decomposition of geometric islamic patterns: A case study on star polygon design in the tombstones of ahlat, Nexus Network Journal 22 (1), (2020). DOI: 10.1007/s00004-018-0416-6. [Google Scholar]
  25. A. Nasri, R. Benslimane. Parametric shape grammar formalism for moorish geometric design analysis and generation, Journal on Computing and Cultural Heritage 10 (4), (2017). DOI: 10.1145/3064419. [CrossRef] [Google Scholar]
  26. J.C. Driscoll. Fractal Patterns as fitness criteria in genetic algorithms applied as a design tool in architecture, Nexus Network Journal 23 (1), (2021). DOI: 10.1007/s00004-020-00490-4. [CrossRef] [Google Scholar]
  27. M. Abdelsalam, M. Ibrahim. Fractal dimension of islamic architecture: The case of the mameluke madrasas: Al-sultan hassan madrasa Gazi University, Journal of Science 32 (1), (2019). [Google Scholar]
  28. D. Sutton. Islamic design. A genius for geometry (Wooden Books Ltd), (2007). [Google Scholar]
  29. E.H. Hankin. The Drawing of Geometric Patterns in Saracenic Art, Memories of the Archaeological Society of India 15, (1925). [Google Scholar]
  30. K. Critchlow. Islamic patterns. An Analytical and Cosmological Approach, Thames and Hudson, London, (1976). [Google Scholar]
  31. J. Bourgoin. Les éléments de l'art arabe. Le trait des entrelacs, Librairie de firmin-didot. Paris, (1879). [Google Scholar]
  32. J. Bonner. Islamic Geometric Patterns. Their Historical Development and Traditional Methods of Construction, Springer (2017). DOI: 10.1007/978-1-4419-0217-7. [Google Scholar]
  33. J.-M. Castera. Persian Variations. Springer, in Nexus Network, Journal Architecture and Mathematics, (2016). DOI: 10.1007/s00004-015-0281-5. [Google Scholar]
  34. C.S. Kaplan. Computer Graphics and Geometric Ornamental Design, The dissertation for the degree of Doctor of Philosophy (University of Washington), (2002). DOI: 10.1145/936717. [Google Scholar]
  35. S.J. Abas, A.S. Salman. Symmetries of islamic geometrical patterns, (1994). DOI: 10.1142/2301. [Google Scholar]
  36. M. Pelletier. Zellij Qusicrystals - A Gallery. Les tracés de l’Arabesque géométrique (Académie des Arts Traditionnels, Casablanca), (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.