Open Access
Issue
E3S Web Conf.
Volume 280, 2021
Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021)
Article Number 06008
Number of page(s) 7
Section Sustainable Environment and Environmental Management
DOI https://doi.org/10.1051/e3sconf/202128006008
Published online 30 June 2021
  1. American Water Works Association, Chromium in drinking water: A Technical Information Primer. (AWWA, 2013) [Google Scholar]
  2. Water and air quality Bureau, Healthy Environments and Consumer Safety Branch. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document - Chromium. (Health Canada, Ottawa, Ontario, Catalogue No K144-36/2017RPDF, 2016) [Google Scholar]
  3. A. Zhitkovich, Chromium in Drinking Water: Sources, Metabolism and Cancer Risks. Chem. Res. Toxicol. 24, 1617–1629 (2011). dx.doi: 10.1021/tx200251t [CrossRef] [PubMed] [Google Scholar]
  4. WHO, Chromium in Drinking-water, Draft Background document for development of WHO Guidelines for Drinking-water Quality. (WHO/SDE/WSHxxxxx, 2019) [Google Scholar]
  5. Agency for Toxic Substances and Disease Registry, Toxicological profile for chromium. (U.S. Department of Health and Human Services, Atlanta, Georgia, 2012) [Google Scholar]
  6. EFSA Panel on Contaminants in the Food Chain (CONTAM), European Food Safety Authority (EFSA), EFSA Journal 12(3), 3595 (2014) [Google Scholar]
  7. US National Institute of Environmental Health Sciences, National Toxicology Program, NTP technical report on the toxicology and carcinogenesis studies of chromium picolinate monohydrate (CAS No. 27882-76-4) in F344/N rats and B6C3F1 mice (feed studies). (NTP TR 556, 2008) [Google Scholar]
  8. European Union, Council Directive 98/83/EC on the quality of water intended for human consumption: calculation of derived activity concentrations. (Off. J. Eur. Com. 12 December, 1998; OJ L330/32, 1998 with amendments - 1998L0083 - EN - 27.10.2015 - 003.001 - 1, 2015) [Google Scholar]
  9. European Union, Proposal for a Directive of the European parliament and of the Council on the quality of water intended for human consumption (recast) (Text with EEA relevance) 1.2.2018 COM(2017) 753 final 2017/0332 (COD). (Brussels, 2018) [Google Scholar]
  10. P. Brandhuber, M. Frey, M.J. McGuire, P-F. Chao, C. Seidel, G. Amy, J. Yoon, L.S. McNeill, K. Banerjee, Low-level hexavalent chromium treatment options: Bench-scale evaluation, (AWWARF, Report No. 91042F, Denver, CO, 2004) [Google Scholar]
  11. M. McGuire, N. Blute, C. Seidel, G. Qin, L. Fong, Pilot-Scale Studies of Hexavalent Chromium Removal from Drinking Water. J. AWWA 98 (2), 134–143 (2006). DOI: 10.1002/j.1551-8833.2006.tb07595.x [Google Scholar]
  12. A. Mnif, I. Bejaoui, M. Mouelhi, B. Hamrouni, Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane. Int. J. Anal. Chem. (2017). doi:10.1155/2017/7415708 [Google Scholar]
  13. C. S. L. dos Santos, M. H. M. Reis, V. L. Cardoso, M. M. de Resende, Electrodialysis for removal of chromium (VI) from effluent: Analysis of concentrated solution saturation. J. Environ. Chem. Eng. (2019). doi:10.1016/j.jece.2019.103380 [Google Scholar]
  14. Y. Chen, G. Gu, Short-term batch studies on biological removal of chromium from synthetic wastewater using activated sludge biomass. Bioresour. Technol. 96 (15), 1722–1729 (2005). doi:10.1016/j.biortech.2004.12.023 [Google Scholar]
  15. N. H. Mthombeni, S. Mbakop, S. C. Ray, T. Leswifi, A. Ochieng, M. S. Onyango, Highly efficient removal of chromium (VI) through adsorption and reduction: A column dynamic study using magnetized natural zeolitepolypyrrole composite. J. Environ. Chem. Eng. 6, 4008–4017 (2018). doi:10.1016/ j.jece.2018.05.038 [Google Scholar]
  16. D. Mohan, Jr. C.U. Pittman, Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J. Hazard. Mater. 137, 762–811 (2006). doi:10.1016/j.jhazmat. 2006.06.060 [CrossRef] [PubMed] [Google Scholar]
  17. U. O. Aigbe, O. A. Osibote, A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. J. Environ. Chem. Eng. 104503 (2020). doi:10.1016/j.jece.2020.104503 [Google Scholar]
  18. K. Margeta, N. Z. Logar, M. Šiljeg, A. Farkaš, in: Water Treatment, ed. by W. Elshorbagy, R. K. Chowdhury (IntechOpen, UK, 2013) DOI 10.5772/50738 [Google Scholar]
  19. Y. Zeng, H. Woo, G.-H. Lee, J. Park, Adsorption of Cr(VI) on hexadecylpyridinium bromide (HDPB) modified natural zeolites. Micropor. Mesopor. Mat. 130, 83–91 (2010). doi:10.1016/j.micromeso. 2009.10.016 [Google Scholar]
  20. H. Figueiredo, C. Quintelas, Tailored zeolites for the removal of metal oxyanions: Overcoming intrinsic limitations of zeolites. J. Hazard. Mater. 274, 287–299 (2014). dx.doi:10.1016/j.jhazmat. 2014.04.012 [CrossRef] [PubMed] [Google Scholar]
  21. G. L. D. Rivera, A. M. Hernández, A. F. P. Cabello, E. L. R. Barragán, A. L. Montes,, G. A. F. Escamilla, L. S. Rangel, S. I. S. Vazquez, D. A. De Haro Del Río, Removal of chromate anions and immobilization using surfactant-modified zeolites, Journal of Water Process Engineering. J. Water Proc. Eng. (2017). doi:10.1016/j.jwpe.2020.101717 [Google Scholar]
  22. K. Barquist, S. C. Larsen, Chromate adsorption on bifunctional, mag-netic zeolite composites. Micropor. Mesopor. Mat. 130, 97–202 (2010). doi:10.1016/j.micromeso. 2009.11.005 [Google Scholar]
  23. H. Faghihian, R. S. Bowman, Adsorption of chromate by clinoptilolite exchanged with various metal cations. Water Res. 39, 1099–1104 (2005). doi:10.1016/j.watres.2004.12.010 [Google Scholar]
  24. G. Lv, Z. Li, W.-T. Jiang, C. Ackley, N. Fenske, N. Demarco, Removal of Cr(VI) from water using Fe(II)-modified natural zeolite. Chem. Eng. Res. Des. 92, 384–390 (2014). dx.doi:10.1016/j.cherd.2013.08.003 [Google Scholar]
  25. A. G. Thanos, E. Katsou, S. Malamis, V. Drakopoulos, P. Paschalakis, E. A. Pavlatou, K. J. Haralambous, Cr(VI) removal from aqueous solutions using aluminosilicate minerals in their Pbexchanged forms. Appl. Clay Sci. 147, 54–62 (2017). dx.doi:10.1016/j.clay.2017.05.040 [Google Scholar]
  26. Y. He, H. Lin, M. Luo, J. Liu, Y. Dong, B. Li, Highly efficient remediation of groundwater cocontaminated with Cr(VI) and nitrate by using nano- Fe/Pd bimetal-loaded zeolite: Process product and interaction mechanism. Environ. Pollut. (2020). doi:10.1016/j.envpol.2020.114479 [Google Scholar]
  27. M. I. Panayotova, V. T. Panayotov, in XXVIII International Mineral Processing Congress (IMPC 2016) Proceedings, 5801-5811, CIM, Quebec City, Canada (2016) [Google Scholar]
  28. I. De la Rosa-Gómez, M.T. Olguín, D. Alcántara, Antibacterial behavior of silver-modified clinoptilolite–heulandite rich tuff on coliform microorganisms from wastewater in a column system. J. Environ. Manag. 88 (4), 853–863 (2008). DOI: 10.1016/j.jenvman.2007.04.005 [Google Scholar]
  29. L. Akhigbe, S. Ouki, D. Saroj, X. M. Lim, Silver- Modified Clinoptilolite for the Removal of Escherichia coli and Heavy Metals from Water. Environ. Sci. Pollut. Res. 21, 10940–10948 (2014).DOI 10.1007/s11356-014-2888-6 [Google Scholar]
  30. S. Demirci, Z. Ustaoğlu, G.A. Yılmazer, F. Sahin, N. Baç, Appl. Biochem. Biotech. A: Enz. Eng. Biotechnol. 172, 1652–62 (2014) [Google Scholar]
  31. M. I. Panayotova, N. N. Mintcheva, O. T. Gemishev, G. T. Tyuliev, G. D. Gicheva, L. P. Djerahov, Bulg. Chem. Commun. 50 F, 211–218 (2018) [Google Scholar]
  32. M. Panayotova, N. Mintcheva, G. Gicheva, V. Panayotov, L. Djerahov, B. Ivanov, Eco & Safety 13, 58–67 (2019) www.scientificpublications. net/en/article/1001859 [Google Scholar]
  33. V. J. Inglezakis, A. Satayeva, A. Yagofarova, Z. Tauanov, K. Meiramkulova, J. Farrando-Pérez, J. C. Bear, Surface Interactions and Mechanisms Study on the Removal of Iodide fromWater by Use of Natural Zeolite-Based Silver Nanocomposites. Nanomaterials 10, 1156 (2020). doi:10.3390/ nano10061156 [Google Scholar]
  34. J. Lopez-Luna, L. E. Ramirez-Montes, S. Martinez-Vargas, A. I. Martнnez, O. F. Mijangos-Ricardez, M. del C. A. Gonzalez-Chavez, R. Carrillo-Gonzalez, F. A. Solis-Dominguez, M. del C. Cuevas-Diaz, V. Vazquez-Hipolito, Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences 1, 950 (2019). doi:10.1007/s42452-019-0977-3 [Google Scholar]
  35. S. Canzano, P. Iovino, V. Leone, S. Salvestrini, S. Capasso, Use and Misuse of Sorption Kinetic Data: A Common Mistake that Should be Avoided. Adsorpt. Sci.Technol. 30 (3), 217–225 (2012). doi:10.1260/0263-6174.30.3.217 [Google Scholar]
  36. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2–10 (2010) [Google Scholar]
  37. L.J. Martínez, A. Muñoz-Bonilla, E. Mazario, Adsorption of chromium(VI) onto electrochemically obtained magnetite nanoparticles. Int. J. Environ. Sci. Technol. 12, 4017–4024 (2015). doi:10.1007/s13762-015-0832-z [Google Scholar]
  38. Y.S. Ho, Review of second-order models for adsorption systems. J. Hazard. Mater. B136, 681–689 (2006). doi:10.1016/j.jhazmat.2005.12.043 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.