Open Access
Issue
E3S Web Conf.
Volume 280, 2021
Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021)
Article Number 07004
Number of page(s) 9
Section Sustainable Materials and Technologies
DOI https://doi.org/10.1051/e3sconf/202128007004
Published online 30 June 2021
  1. V.A Abyzov, K.K. Pushkarova, M. O. Kochevykh, O.A. Honchar, N.L. Bazeliuk, Innovative building materials in creation an architectural environment. IOP Conf. Series: Materials Science and Engineering 907, 012035 (2020). doi: 10.1088/1757-899X/907/1/012035 [Google Scholar]
  2. D. Anopko, O. Honchar, M. Kochevykh, L. Kushnierova, Radiation protective properties of finegrained concretes and their radiation resistance. IOP Conf. Series: Materials Science and Engineering 907, 012031 (2020). doi: 10.1088/1757-899X/907/1/012031 [Google Scholar]
  3. M. Hohol, M. Sanytsky, T. Kropyvnytska, A. Barylyak, Y. Bobitski, The effect of sulfur-and carbon-codoped TiO2 nanocomposite on the photocatalytic and mechanical properties of cement mortars. Eastern-European Journal of Enterprise Technologies 4(6-106), 6–14 (2020). doi: 10.15587/1729-4061.2020.210218 [Google Scholar]
  4. M. Sanytsky, T. Kropyvnytska, S. Fic, H. Ivashchyshyn, Sustainable low-carbon binders and concretes. E3S Web Conf. 166, 06007 (2020). doi: 10.1051/e3sconf/202016606007 [Google Scholar]
  5. T. Kropyvnytska, T. Rucinska, H. Ivashchyshyn, R. Kotiv, Development of Eco-Efficient Composite Cements with High Early Strength. Lecture Notes in Civil Engineering 47, 211–218 (2020). doi: 10.1007/978-3-030-27011-7_27 [Google Scholar]
  6. T. Markiv, K. Sobol, N. Petrovska, O. Hunyak, The Effect of Porous Pozzolanic Polydisperse Mineral Components on Properties of Concrete. Lecture. Notes in Civil Engineering 47, 275–282 (2020). doi: 10.1007/978-3-030-27011-7_35 [Google Scholar]
  7. T. Markiv, Kh. Sobol, M. Franus, W. Franus, Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering 16, 554–562 (2016). doi: 10.1016/j.acme.2016.03.013 [Google Scholar]
  8. S. Chepurna, O. Borziak, S. Zubenko, Concretes, modified by the addition of high-diffused chalk, for small architectural forms. Materials Science Forum 968, 82–88 (2019). doi: 10.4028/www.scientific.net/MSF.968.82 [Google Scholar]
  9. O. Moskalenko, R. Runova, Ice Formation as an Indicator of Frost-Resistance on the Concrete Containing Slag Cement in Conditions of Freezing and Thawing. Materials Science Forum 865, 145–150 (2016). doi: 10.4028/www.scientific.net/MSF.865.145 [CrossRef] [Google Scholar]
  10. O. Bondarenko, S. Guzii, K. Zaharchenko, E. Novoselenko, Development of protective materials based on glass- and slag-containing portland cement structures. Eastern-European Journal of Enterprise Technologies 6/11(78), 41–47 (2015). doi: 10.15587/1729-4061.2015.56577. [Google Scholar]
  11. O.Yu. Berdnyk, O.V. Lastivka, A.A. Maystrenko N.O. Amelina, Processes of structure formation and neoformation of basalt fiber in an alkaline environment. IOP Conf. Series: Materials Science and Engineering 907. 012036 (2020). doi: 10.1088/1757-899X/907/1/012036 [Google Scholar]
  12. V.I. Gots, O.V. Lastivka, O.Yu. Berdnyk, O.O. Tomin, P.S. Shilyuk, Corrosion resistance of polyester powder coatings using fillers of various chemical nature. Key Engineering Materials 864. 115–121 (2020). doi: 10.4028/www.scientific.net/KEM.864.115 [Google Scholar]
  13. J.L. Provis, Geopolymers and other alkali activated materials: why, how, and what? Mater Struct. 47, 11–25 (2014). doi: 10.1617/s11527-013-0211-5 [Google Scholar]
  14. V.V. Chistyakov, I.G. Grankovskii, V.I. Gots, Structure formation upon hardening of slag-alkali binder. Journal of applied chemistry of the USSR. 59 (3), 542–546 (1986) [Google Scholar]
  15. A. Fernández-Jiménez, J.Y. Pastor, A. Martín, A. Palomo, High-Temperature Resistance in Alkali- Activated Cement. Journal of the American Ceramic Society 93 (10), 3411–3417 (2010). doi: 10.1111/j.1551-2916.2010.03887.x [Google Scholar]
  16. V.I. Gots, O.Y. Berdnyk, N.O. Rogozina, A.A. Maystrenko. Production of modified basalt fibre for heat-insulating products manufacturing. IOP Conference Series: Materials Science and Engineering (MSE) 708. 012082 (2019). doi: 10.1088/1757-899X/708/1/012082 [Google Scholar]
  17. O. Kovalchuk, V. Grabovchuk, Ya. Govdun, Alkali activated cements mix design for concretes application in high corrosive conditions. MATEC Web of conferences 230, 03007 (2018). doi: 10.1051/matecconf/201823003007 [EDP Sciences] [Google Scholar]
  18. M. Cyr, R. Pouhet, The frost resistance of alkaliactivated cement-based binders. Handbook of Alkali- Activated Cements, Mortars and Concretes 293–318 (2015). doi: 10.1533/9781782422884.3.293 [Google Scholar]
  19. Y. Savchuk, A. Plugin, V. Lyuty, O. Pluhin, O. Borziak, Study of influence of the alkaline component on the physico-mechanical properties of the low clinker and clinkerless waterproof compositions. MATEC Web of Conferences 230, 03018 (2018). doi: 10.1051/matecconf/201823003018 [CrossRef] [EDP Sciences] [Google Scholar]
  20. Y.V. Tsapko, A.Yu. Tsapko, O.P. Bondarenko, M.V. Sukhanevych, M.V. Kobryn, Research of the process of spread of fire on beams of wood of fire-protected intumescent coatings. IOP Conference Series: Materials Science and Engineering 708, 01211 (2019). doi: 10.1088/1757-899x/708/1/012112 [Google Scholar]
  21. Y. Tsapko, D. Zavialov, O. Bondarenko, N. Marchenco, S. Mazurchuk, O. Horbachova, Determination of thermal and physical characteristics of dead pine wood thermal insulation products. Eastern-European Journal of Enterprise Technologies 4 (10 (100)), 37–43 (2019). doi: 10.15587/1729-4061.2019.175346 [Google Scholar]
  22. V. Gots, A. Gelevera, O. Petropavlovsky, N. Rogozina, V. Smeshko, Influence of whitening additives on the properties of decorative slag-alkaline cements. IOP Conf. Series: Materials Science and Engineering 907, 012033 (2020). doi: 10.1088/1757-899X/907/1/012033 [Google Scholar]
  23. C. Shi, A. Fernández-Jiménez, A. Fernández-Jiménez, Stabilization/Solidification of Hazardous and Radioactive Wastes with Alkali-Activated Cements. Journal of Hazardous Materials 137(3) 1656–63 (2006). doi: 10.1016/j.jhazmat.2006.05.008 [CrossRef] [PubMed] [Google Scholar]
  24. G. Kochetov, T. Prikhna, O. Kovalchuk, D. Samchenko, Research of the treatment of depleted nickel-plating electrolytes by the ferritization method. Eastern-European Journal of Enterprise Technologies 3(6-93), 52–60 (2018). doi: 10.15587/1729-4061.2018.133797 [Google Scholar]
  25. A. Miller, A. Horvath, P.J.M. Monteiro, Impacts of booming concrete production on water resources worldwide. Nat. Sustain. 1, 69–76 (2018). doi: 10.1038/s41893-017-0009-5 [Google Scholar]
  26. A.M. Rashad, Y. Bai, P.A.M. Basheer, N.B. Milestone, N.C. Collier, Hydration and properties of sodium sulfate activated slag. Cem. Concr. Compos. 37, 20–29 (2013). doi: 10.1016/j.cemconcomp.2012.12.010 [Google Scholar]
  27. A.R. Brough, M. Holloway, J. Sykes, A. Atkinson, Sodium silicate-based alkaliactivated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid. Cem. Concr. Res. 30, 1375–1379 (2000). doi: 10.1016/S0008-8846(00)00356-2 [Google Scholar]
  28. W.K.W. Lee, J.S.J. van Deventer, The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 211 115–126 (2002). doi: 10.1016/S0927-7757(02)00239-X [Google Scholar]
  29. P.V. Krivenko, Why Alkaline Activation – 60 Years of the Theory and Practice of Alkali-Activated Materials. Journal of Ceramic Science and Technology 8. 323–334 (2017). doi: 10.4416/JCST2017-00042 [Google Scholar]
  30. P. Krivenko, I. Rudenko, O. Konstantynovskyi, Design of slag cement, activated by Na(K) salts of strong acids, for concrete reinforced with steel fittings. Eastern-European Journal of Enterprise Technologies 6 (6-108), 26–40 (2020). doi: 10.15587/1729-4061.2020.217002 [Google Scholar]
  31. A.M. Rashad, M. Ezzat, A Preliminary study on the use of magnetic, Zamzam, and sea water as mixing water for alkali-activated slag pastes. Construction and Building Materials 207, 672–678 (2019). doi: 10.1016/j.conbuildmat.2019.02.162 [Google Scholar]
  32. Y. Jun, T. Kim, J. H. Kim, Chloride-bearing characteristics of alkali-activated slag mixed with seawater: Effect of different salinity levels. Cement and Concrete Composites 112, 103680 (2020). doi: 10.1016/j.cemconcomp.2020.103680 [Google Scholar]
  33. P. Krivenko, V. Gots, O. Petropavlovskyi, I. Rudenko, O. Konstantynovskyi, A. Kovalchuk, Development of solutions concerning regulation of proper deformations in alkali-activated cements. Eastern-European journal of Enterprise Technologies 5 (6-101), 24–32 (2019). doi: 10.15587/1729-4061.2019.181150 [CrossRef] [Google Scholar]
  34. P. Krivenko, O. Petropavlovskyi, I. Rudenko, O. Konstantynovskyi, A. Kovalchuk, Complex multifunctional additive for anchoring grout based on alkali-activated portland cement. IOP Conference Series 907, 012055 (2020) doi: 10.1088/1757-899X/907/1/012055 [Google Scholar]
  35. M. Criado, The corrosion behaviour of reinforced steel embedded in alkali-activated mortar. Handbook of Alkali-Activated Cements. Mortars and Concretes 2015, 333–372 (2015). doi: 10.1533/9781782422884.3.333 [Google Scholar]
  36. S. Mundra, S. A. Bernal, M. Criado, et al., Steel corrosion in reinforced alkali-activated materials. RILEM Tech. Lett. 2. 33–39 (2017). doi: 10.21809/rilemtechlett.2017.39 [Google Scholar]
  37. M.S.H. Khan, O. Kayali, Chloride binding ability and the onset corrosion threat on alkali-activated GGBFS and binary blend pastes. Eur. J. Environ. Civ. En. 22 (8). 1023–1039 (2018). doi: 10.1080/19648189.2016.1230522 [Google Scholar]
  38. H.A. Yousif, F.F. Al-Hadeethi, B. Al-Nabilsy, A.N. Abdelhadi, Corrosion of Steel in High-Strength Self- Compacting Concrete Exposed to Saline Environment. Corrosion of Steel in High-Strength Self-Compacting Concrete Exposed to Saline Environment. International Journal of Corrosion 2014, 564163 (2014). doi: 10.1155/2014/564163 [Google Scholar]
  39. P. Krivenko, O. Petropavlovskyi, O. Kovalchuk, I. Rudenko, O. Konstantynovskyi, Enhancement of alkali-activated slag cement concretes crack resistance for mitigation of steel reinforcement corrosion. E3S Web of Conferences 166, 06001 (2020). doi: 10.1051/e3sconf/202016606001 [EDP Sciences] [Google Scholar]
  40. Y. Jun, Y. H. Bae, T. Y. Shin, J. H. Kim, H. J. Yim, Alkali-Activated Slag Paste with Different Mixing Water: A Comparison Study of Early-Age Paste Using Electrical Resistivity. Materials 13. 2447 (2020). doi: 10.3390/ma13112447 [Google Scholar]
  41. X. Ke, S. A. Bernal, J. L. Provis, Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkaliactivated slag cement. Cem. Concr. Res. 100. 1–13 (2017). doi: 10.1016/j.cemconres.2017.05.015 [Google Scholar]
  42. L. Raki, J. J. Beaudoin, L. Mitchell. Layered double hydroxidelike materials: Nanocomposites for use in concrete. Cem. Concr. Res. 34 (9). 1717–1724 (2004). doi:/10.1016/j.cemconres.2004.05.012 [Google Scholar]
  43. Q. Wang, D. O’Hare. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112 (7). 4124–4155 (2012). doi: 10.1021/cr200434v. [CrossRef] [PubMed] [Google Scholar]
  44. X. Ke, S. A. Bernal, J. L. Provis. Chloride binding capacity of synthetic C-(A)-S-H type gels in alkaliactivated slag simulated pore solutions. 1st International Conference on Construction Materials for Sustainable Future. 1–7 (2017). [Google Scholar]
  45. Q. Yuan, C. Shi, G. De Schutter, K. Audenaert, D. Deng, Chloride Binding of Cement-Based Materials Subjected to External Chloride Environment – A Review. Constr. Build. Mater. 23 (1), 1–13 (2009). doi: 10.1016/j.conbuildmat.2008.02.004 [Google Scholar]
  46. B.A. Clark, P.W. Brown, The formation of calcium sulfoaluminate hydrate compounds, Part II. Cement and Concrete Research 30, 233–240 (2000) doi: 10.1016/S0008-8846(99)00234-3 [Google Scholar]
  47. E. Pushkarova, V. Gots, O. Gonchar, Stability of hydrosulfoaluminosiljcate compounds and durability of an artificial stone based on them. Brittle Matrix Composites 8, 399–408 (2006) [Google Scholar]
  48. E. Pushkarova, V. Gots, O. Gonchar, Stability of hydrosulfoaluminosiljcate compounds and durability of an artificial stone based on them (Book Chapter). Brittle Matrix Composites 8, 399–408 (2007), doi: 10.1533/9780857093080.399 [Google Scholar]
  49. L.G. Baquerizo, T. Matschei, K.L. Scrivener, M. Saeidpour, L. Wadsö, Hydration states of AFm cement phases. Cement and Concrete Research 73, 143–157 (2015). doi: 10.1016/j.cemconres.2015.02.011 [Google Scholar]
  50. A.A. Plugin, O.S. Borziak, O.A. Pluhin, T.A. Kostuk, D.A. Plugin, Hydration products that provide waterrepellency for portland cement-based waterproofing compositions and their identification by physical and chemical methods. Lecture Notes in Civil Engineering 100, 328–335 (2020). 10.1007/978-3-030-57340-9_40 [Google Scholar]
  51. Yu.L. Nosovskyi, PhD (Eng) thesis, Kyiv, 2004 [Google Scholar]
  52. S.A. Bernal, Advances in near-neutral salts activation of blast furnace slags. RILEM Technical Letters 1, 39–44 (2016). doi: 10.21809/rilemtechlett.v1.8 [Google Scholar]
  53. Yu.A. Sidorenko, PhD (Eng) thesis, Kyiv, 1991 [Google Scholar]
  54. V.I. Pushkar, PhD (Eng) thesis, Kyiv, 2010 [Google Scholar]
  55. C. Belviso, N. Perchiazzi, F. Cavalcante, Zeolite from Fly Ash: An Investigation on Metastable Behavior of the Newly Formed Minerals in a Medium-High-Temperature Range. Ind. Eng. Chem. Res. 58 (44), 20472–20480 (2019). doi: 10.1021/acs.iecr.9b03784 [Google Scholar]
  56. A. Mesbah, M. François, C. Caudit-Coumes et al. Crystal structure of Kuzel’s salt 3CaO·Al2O3·1/2CaSO4·1/2CaCl2·11H2O determined by synchrotron powder diffraction. Cement and Concrete Research 41, 504–509 (2011). doi: 10.1016/j.cemconres.2011.01.015 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.