Open Access
Issue
E3S Web Conf.
Volume 280, 2021
Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021)
Article Number 07009
Number of page(s) 6
Section Sustainable Materials and Technologies
DOI https://doi.org/10.1051/e3sconf/202128007009
Published online 30 June 2021
  1. Lo Monaco, А., Pelosi, C., Agresti, G., Picchio, R., Rubino, G.: Influence of thermal treatment on selected properties of chestnut wood and full range of its visual features. Drewno 63 (205), 5–24 (2020) [Google Scholar]
  2. Krivenko, P., Petropavlovskyi, O., Kovalchuk, O., Rudenko, I., Konstantynovskyi, O.: Enhancement of alkali-activated slag cement concretes crack resistance for mitigation of steel reinforcement corrosion. E3S Web of Conferences 166, 06001 (2020) doi: 10.1051/e3sconf/202016606001 [EDP Sciences] [Google Scholar]
  3. Krivenko, P.V., Petropavlovskyi, O.M., Rudenko, I.I., Konstantynovskyi, O.P., Kovalchuk, A.V.: Alkali-activated portland cement with adjustable proper deformations for anchoring application. IOP Conference Series: Materials Science and Engineering (MSE) 708, 012090 (2019) doi:10.1088/1757-899X/708/1/012090 [Google Scholar]
  4. Tsapko, Y., Tsapko, А., Bondarenko, O.: Establishment of heatexchange process regularities at inflammation of reed samples. Eastern-European Journal of Enterprise Technologies 1 (10-97), 36–42 (2019). doi: 10.15587/1729-4061.2019.156644 [Google Scholar]
  5. Tsapko, Y.V., Tsapko, A.Yu., Bondarenko, O.P., Sukhanevych, M.V., Kobryn, M.V.: Research of the process of spread of fire on beams of wood of fireprotected intumescent coatings. IOP Conference Series: Materials Science and Engineering 708, 012112 (2019). doi:10.1088/1757-899X/708/1/012112 [Google Scholar]
  6. Bondarenko, O., Guzii, S., Zaharchenko, E., Novoselenko, E.: Development of protective materials based on glass- and slag-containing portland cement structures Eastern-European Journal of Enterprise Technologies 6 (11-78), 41–47 (2015). doi: 10.15587/1729-4061.2015.56577 [Google Scholar]
  7. Esteves, В., Pereira, H.: Wood modification by heat treatment. A review. Bioresources 4 (1), 370–404 (2009) http://ncsu.edu/bioresources [Google Scholar]
  8. Humar, M., Lesar, B., Kržišnik, D.: Moisture Performance of Façade Elements Made of Thermally Modified Norway Spruce Wood. Forests 11 (3), 348 (2020). doi: 10.3390/f11030348 [Google Scholar]
  9. Humar, M., Repič, R., Kržišnik, D., Lesar, B.: Quality Control of Thermally Modified Timber Using Dynamic Vapor Sorption (DVS) Analysis. Forests 11 (6), 666 (2020). doi: 10.3390/f11060666 [Google Scholar]
  10. Aytin, S., Korkut, Р.: Effect of thermal treatment on the swelling and surface roughness of common alder and wych elm wood. Journal of Forestry Research 27(1), 225–229 (2016). doi: 10.1007/s11676-015-0136-7 [Google Scholar]
  11. Pelosi, G., Agresti, L., Lanteri, R., Picchio, Е., Gennari, E., Lo Monaco, A.: Artificial Weathering Effect on Surface of Heat-Treated Wood of Ayous (Triplochiton scleroxylon K. Shum). Conference: The 1st International Electronic Conference on Forests (IECF) (2020). https://sciforum.net/conference/IECF2020 [Google Scholar]
  12. Ugovšek, B., Šubic, G., Humar, M., Lesar, B., Thaler, N., Brischke, C., Jones, D., Lozano, J.I.: Performance of Windows and façade elements made of thermally modified Norway spruce (Picea abies) in different climatic conditions. In Proceedings of the WCTE 2016-World Conference on Timber Engineering (2016). doi: 10.1007/s11998-016-9871-8 [Google Scholar]
  13. Ugovšek, B., Šubic, G., Starman, J., Rep, G., Humar, M., Lesar, B., Thaler, N., Brischke, C., Meyer-Veltrup, L., Jones, D., Häggström, U., Lozano, J.I.: Short-term performance of wooden windows and facade elements made of thermally modified and non-modified Norway spruce in different natural environments. Wood Material Science and Engineering 14, 42–47 (2019). https://doi.org/10.1080/17480272.2018.1494627 [Google Scholar]
  14. Bonifazi, G., Serranti, S., Capobianco, G., Agresti, G., Calienno, L., Picchio, R., Lo Monaco, A., Santamaria, U., Pelosi, C.: Hyperspectral imaging as a technique for investigating the effect of consolidating materials on wood. Journal of Electronic Imaging 26 (1), 011003 (2017) [Google Scholar]
  15. Jones, D., Sandberg, D., Goli, G., Todaro, L.: Wood Modification in Europe: a state-of-the-art about processes, products and applications. International, metadata CC0 1.0 Universal, published by Firenze University Press (2019). doi: 10.36253/978-88-6453-970-6 [Google Scholar]
  16. Fengel, D., Wegener, G.: Wood: Chemistry, Ultrastructure, Reactions, 2nd ed. Walter de Gruyter (Berlin, Germany, 1989). doi: https://doi.org/10.1515/9783110839654 [Google Scholar]
  17. Garrote, G., Domínguez, H., Parajó, J.C.: Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werkstoff 57, 191–202 (1999). https://doi.org/10.1007/s001070050039 [Google Scholar]
  18. Hill, C.A.S.: Wood Modification: Chemical, Thermal and Other Processes (London, UK, John Wiley & Sons, 2006) [Google Scholar]
  19. Bourgois, J., Bartholin, M., Guyonnet, R.: Thermal treatment of wood: Analysis of the obtained product. Journal Wood Sci. Technol. 23, 303–310 (1989) [Google Scholar]
  20. Tjeerdsma, В., Militz, H.: Chemical changes in hydroheat wood: FTIRanalysis of combined hydroheat and dry heat-treated wood. Holz Roh- Werkst 63, 102–111 (2005). [Google Scholar]
  21. Sivonen, H., Maunu, S., Sundholm, F., Jämsä, S., Viitaniemi, P.: Magneticresonance studies of thermally modified wood. Holzforschung 56, 648–654 (2002). [Google Scholar]
  22. Nuopponen, M., Vuorinen, T., Jamsä, S., Viitaniemi, P.: Thermalmodifications in softwood studied by FT-IR and UV resonance Ramanspectroscopies. Journal Wood Chem. Technol. 24, 13–26 (2004) [Google Scholar]
  23. Shestak, J.: Theory of thermal analysis (Moscow, Mir, 1987) [Google Scholar]
  24. Broido, A.: A simple sensitive graphical method of treating thermogravimetry analyse data. Journal Polym. Sci. Part A 7 (2), 1761–1773 (1969) [Google Scholar]
  25. Boonstra, M.J., Tjeerdsma, B., Pizzi, A., Tekely, P., Pendlebury, J.: Chemical modification of Norway spruce and Scots pine: a 13C NMR CP-MAS study of the reactivity and reactions of polymeric wood components 50, 215- 220 (1996) [Google Scholar]
  26. Candelier, K., Dumarçay, S., Pétrissans, A., Gérardin, P., Pétrissans, M.: Mechanical properties of heat treated wood after thermodegradation under different treatment intensity. International Conference “Mechano-chemical transformations of wood during thermo-hydro-mechanical processes” (2011). doi: 10.4067/S0718-221X2015005000024 [Google Scholar]
  27. Candelier, K., Hannouz, S., Elaieb, M.T., Collet, R., Dumarçay, S., Pétrissans, A., Gérardin, P., Pétrissans, M.: Utilization of temperature kinetic as a method to predict treatment intensity and corresponding treated wood quality: durability and mechanical properties of thermally modified wood. Maderas-Ciencia Tecnologia 17, 253–262 (2015). http://dx.doi.org/10.4067/S0718-221X2015005000024 [Google Scholar]
  28. Hamada, J., Petrissans, A., Mothe, F., Petrissans, M., Gerardin, P.: Analysis of the effects of the European oak natural variability on the modification of the density distribution and chemical composition during the heat treatment. Proceedings of the Joint focus workshop of COST Action FP1006 & FP0904 (2013). doi: 10.1007/s13595-015-0499-0 [Google Scholar]
  29. Dibrova, O., Kyrychenko, O., Motrichuk, R., Tomenko, M., Melnyk, V.: Fire safety improvement of pyrotechnic nitrate-metal mixtures under external thermal conditions. Technology Audit and Production Reserves 1 (51), 44–49 (2020). doi: https://doi.org/10.15587/2312-8372.2020.199252 [Google Scholar]
  30. Krüger, S., Gluth, G.J.G., Watolla, M.-B., Morys, M., Häßler, D., Schartel, B.: Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen. Bautechnik 93 (8), 531–542 (2016). doi: https://doi.org/10.1002/bate.201600032 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.