Open Access
Issue |
E3S Web Conf.
Volume 280, 2021
Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021)
|
|
---|---|---|
Article Number | 08016 | |
Number of page(s) | 10 | |
Section | Sustainable Mining | |
DOI | https://doi.org/10.1051/e3sconf/202128008016 | |
Published online | 30 June 2021 |
- B.S. Salas, Dissertation, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona, 2017 [Google Scholar]
- P. Günther, T. Naidu, in WISA Biennial Conference, Johannesburg, South Africa, paper 030 (2008) [Google Scholar]
- H. Al-Zoubi, A. Rieger, P. Steinberger, W. Pelz, R. Haseneder, G. Härtel, Optimization study for treatment of acid mine drainage using membrane technology. Sep. Sci. Technol. 45, 2004–2016 (2010). doi.org/10.1080/01496395.2010.480963 [Google Scholar]
- S.P. Chesters, P. Morton, M. Fazel, in: Mining Meets Water – Conflicts and Solutions, IMWA Proceedings Freiberg, Germany, 2016, ed. by C. Drebenstedt, M. Paul [Google Scholar]
- R. Thiruvenkatachari, S. Su, M. Cunnington, FO-RO for mining wastewater treatment. Current Trends and Future Developments on (Bio-) Membranes, Reverse and Forward Osmosis: Principles, Applications, Advances, 325-336 (2020) doi.org/10.1016/B978-0-12-816777-9.00014-9 [Google Scholar]
- G. Levay, R.St.C. Smart, W.M. Skinner, The impact of water quality on flotation performance. J. S. Afr. I. Min. Metall. 101, 69-75 (2001). www.saimm.co.za/Journal/v101n02p069.pdf [Google Scholar]
- W. Liu, C.J. Moran, S. Vink, A review of the effect of water quality on flotation. Miner. Eng. 53, 91–100 (2013) doi.org/10.1016/j.mineng.2013.07.011 [Google Scholar]
- Project BioMore, Report on “Results of PLS preconcentration, product recovery and effluent treatment. (Horizon 2020 – grant No 642456, Ares-1742378 - 31/03/2017, 2017) [Google Scholar]
- B.K. Pramanik, M.B. Asif, S. Kentish, L.D. Nghiem, F.I. Hai, Lithium enrichment from a simulated salt lake brine using an integrated nanofiltrationmembrane distillation process. J. Environ. Chem. Eng. (2019). doi.org/10.1016/j.jece.2019.103395 [Google Scholar]
- J. Song, T. Huang, H. Qiu, X. Niu, X.M. Li, Y. Xie, T. He, A critical review on membrane extraction with improved stability: Potential application for recycling metals from city mine. Desalination 440, 18–38 (2018). doi.org/10.1016/j.desal.2018.01.007 [Google Scholar]
- E.O. Ezugbe, S. Rathilal, Membrane Technologies in Wastewater Treatment: A Review. Membranes 10 (2020). doi:10.3390/membranes10050089 [Google Scholar]
- Interstate Technology & Regulatory Council - Mining Waste Team, Pressure-Driven Membrane Separation Technologies. (Washington, 2010) [Google Scholar]
- P. K. Parhi, Supported Liquid Membrane Principle and Its Practices: A Short Review. Hindawi J. Chem. (2013). dx.doi.org/10.1155/2013/618236 [Google Scholar]
- P. A. Mahakal, R. S. Deshpande, Removal of heavy metal from aqueous wastewater by emulsion liquid membranes. Int. J. Adv. Res. 6 (1), 455-463 (2018). DOI: 10.21474/IJAR01/6242 [Google Scholar]
- J. Piia, Dissertation, University of Oulu, Faculty of Technology, 2016 [Google Scholar]
- H. Kyllönen, E. Järvelä, J. Heikkinen, M. Urpanen, A. Grönroos, in Mine Water and Circular Economy, IMWA 2017, Lappeenranta, Finland, 2017, ed. by C. Wolkersdorfer, L. Sartz, M. Sillanpää, A. Häkkinen [Google Scholar]
- M.F.S. Román, I.O. Gándara, E. Bringas, R. Ibañez, I. Ortiz, Membrane selective recovery of HCl, zinc and iron from simulated mining effluents. Desalination 440, 78–87 (2018). doi.org/10.1016/j.desal.2018.02.005, [Google Scholar]
- L.M. Zhao, Q.B. Chen, Z.Y. Ji, J. Liu, Y.Y. Zhao, X.F. Guo, J.S. Yuan, Separating and recovering lithium from brines using selective-electrodialysis: Sensitivity to temperature. Chem. Eng. Res. Des. 140, 116–127 (2018). doi.org/10.1016/j.cherd.2018.10.009 [Google Scholar]
- Q.-B. Chen, Z.-Y. Ji, J. Liu, Y.-Y. Zhao, S.-Z. Wang, J.-S. Yuan, Development of recovering lithium from brines by selective-electrodialysis: Effect of coexisting cations on the migration of lithium. J. Membr. Sci. 548, 408–420 (2018). doi.org/10.1016/j.memsci.2017.11.040 [Google Scholar]
- Z.Y. Guo, Z.Y. Ji, Q.B. Chen, J. Liu, Y.Y. Zhao, F. Li, Z.Y. Liu, J.S. Yuan, Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysi with monovalent selective ion exchange membranes. J. Cleaner Prod. 193, 338–350 (2018). doi.org/10.1016/j.jclepro.2018.05.077 [Google Scholar]
- W. Rahmah, A.K. Wardani, G. Lugito, I.G. Wenten, Membrane Technology in Deep Seawater Exploration: A Mini Review. J. Membrane Sci. Res. 6, 280-294 (2020). DOI: 10.22079/JMSR.2019.110529.1270 [Google Scholar]
- L.A. Lien, in Hydrocopper 2009, Proceedings of the V International Copper Hydrometallurgy Workshop, Antofagasta, Chile, 2009, ed. by J.M.C. de Prada, E. Domic [Google Scholar]
- H. Bayer, in Proceedings of the 2004 Ontario MEND Workshop, Sudbury, Ontario, May 26 and 27 2004 [Google Scholar]
- C.M. Zhong, Z.L. Xu, X.H. Fang, L. Cheng, Treatment of acid mine drainage (AMD) by ultralow-pressure reverse osmosis and nanofiltration. Environ Eng Sci 24, 1297-1306 (2007). doi.org/10.1089/ees.2006.0245 [Google Scholar]
- S. Mortazavi, Application of membrane separation technology to mitigation of mine effluente and acidic drainage. Mine Environment Neutral Drainage Program (MEND) Report 3.15.1. (MEND and CANMET, Canada, 2008) [Google Scholar]
- A. Rieger, P. Steinberger, W. Pelz, R. Haseneder, G. Hartel, Mine water treatment by membrane filtration processes - Experimental investigations on applicability. Desalin. Water Treat. 6, 54-60 (2009). doi.org/10.5004/dwt.2009.644 [Google Scholar]
- H. Al-Zoubi, A. Rieger, P. Steinberger, W. Pelz, R. Haseneder, G. Hartel, Nanofiltration of acid mine drainage. Desalin. Water. Treat. 21, 148-161 (2010). DOI: 10.5004/dwt.2010.1316 [Google Scholar]
- D. Bacon, K. Payne, Bingham Canyon, Water Treatment Plant, Kennecott South Zone, Case Study as part of a Web-based Technical and Regulatory Guidance, Mining waste treatment technology selection (2010) https://www.itrcweb.org/miningwasteguidance/cs48_kennecott_south.htm. Accessed 23 December 2020 [Google Scholar]
- World Coal Association. Case study. South Africa Anglo American eMalahleni Water Reclamation Plant – Winner of WCA Award for Excellence in Environmental Practice 2013 (WCA, 2014) [Google Scholar]
- M. Mullett, R. Fornarelli, D. Ralph, Nanofiltration of mine water: impact of feed pH and membrane charge on resource recovery and water discharge. Membranes, 4, 163-180 (2014). doi:10.3390/membranes4020163 [CrossRef] [PubMed] [Google Scholar]
- A.O. Aguiar, L.H. Andrade, B.C. Ricci, W.L. Pires, G.A. Miranda, M.C.S. Amaral, Gold acid mine drainage treatment by membrane separation processes: an evaluation of the main operational conditions. Sep. Purif. Technol. 170, 360–369 (2016). doi.org/10.1016/j.seppur.2016.07.003 [Google Scholar]
- L. Pino, E. Beltran, A. Schwarz, M.C. Ruiz, R. Borquez, Optimization of nanofiltration for treatment of acid mine drainage and copper recovery by solvent extraction. Hydrometallurgy (2020). doi.org/10.1016/j.hydromet. 2020.105361 [Google Scholar]
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92, 407-418 (2011). doi:10.1016/j.jenvman.2010.11.011 [Google Scholar]
- P. Häyrynen, J. Landaburu-Aguirre, E. Pongrácz, R.L. Keiski, Study of permeate flux in micellarenhanced ultrafiltration on a semi-pilot scale: Simultaneous removal of heavy metals from phosphorous rich real wastewaters. Sep. Purif. Technol. 93, 59-66 (2012). doi.org/10.1016/j.seppur.2012.03.029 [Google Scholar]
- D.H. Green, J.J. Mueller, US Patent 5961833, 1999 [Google Scholar]
- K. Soldenhoff, J. McCulloch, A. Manis, P. Macintosh, in Nanofiltration–principles and application, ed. by A.I. Schafer, A.G. Fane, T.D. Waite (Elsevier Science, 2004), p. 459-477 [Google Scholar]
- J.A. Lombardi, in Membrane Technology Developments for Mining Applications, Metallurgical Processes Committee, Conference: Perumin, Peru, September 2009 [Google Scholar]
- L.H. Andrade, B.C. Ricci, L.B. Grossi, W.L. Pires, M.C.S. Amaral, Comprehensive bench- and pilotscale investigation of NF for gold mining effluent treatment:membrane performance and fouling control strategies. Sep. Purif. Technol. 174, 44–56 (2017). doi.org/10.1016/j.seppur.2016.09.048 [Google Scholar]
- M.C.S. Amaral, L.B. Grossi, R.L. Ramos, B.C. Ricci, L.H. Andrade, Integrated UF–NF–RO route for gold mining effluent treatment: From bench-scale to pilotscale. Desalination 440, 111–121 (2018). doi.org/10.1016/j.desal.2018.02.030 [Google Scholar]
- R. L. Ramos, L. B. Grossi, B. C. Ricci, M.C.S. Amaral, Membrane selection for the Gold mining pressure-oxidation process (POX) effluent reclamation using integrated UF-NF-RO processes J. Environ. Chem. Eng. (2020). doi.org/10.1016/j.jece.2020.104056 [Google Scholar]
- D.W. Nel, P. van der Gryp, H.W.J.P. Neomagus, D. Bessarabov, Application of membrane technology in a base metal refinery. J. S. Afr. I. Min. Metall. 113, 363-374 (2013). www.scielo.org.za/pdf/jsaimm/v113n4/13.pdf [Google Scholar]
- K. Meschke, R. Hofmann, R. Haseneder, J.-U. Repke, Membrane treatment of leached mining waste – A potential process chain for the separation of the strategic elements germanium and rhenium. Chem. Eng. J. (2020). doi.org/10.1016/j.cej.2019.122476 [Google Scholar]
- V. Flexer, C.F. Baspineiro, C.I. Galli, Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 639, 1188–1204 (2018). doi.org/10.1016/j.scitotenv. 2018.05.223 [CrossRef] [PubMed] [Google Scholar]
- C.H.D. Nieto, K. Rabaey, V. Flexer, Membrane electrolysis for the removal of Na+ from brines for the subsequent recovery of lithium salts. Sep. Purif. Technol. (2020). doi.org/10.1016/j.seppur.2020.117410 [Google Scholar]
- A. Somrani, A.H. Hamzaoui, M. Pontie, Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination 317, 184–192 (2013). dx.doi.org/10.1016/j.desal.2013.03.009 [Google Scholar]
- X. Wen, P. Ma, C. Zhu, Q. He, X. Deng, Preliminary study on recovering lithium chloride from lithiumcontaining waters by nanofiltration. Sep. Purif. Technol. 49, 230–236 (2006). doi.org/10.1016/j.seppur.2005.10.004 [Google Scholar]
- S.Y. Sun, L.J. Cai, X.Y. Nie, X. Song, J.G. Yu, Separation of magnesium and lithium from brine using a Desal nanofiltration membrane. J. Water Proc. Eng. 7, 210–217 (2015). doi.org/10.1016/j.jwpe.2015.06.012 [Google Scholar]
- C.H.D. Nieto, N.A. Palacios, K. Verbeeck, A. Prévoteau, K. Rabaey, V. Flexer, Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water Res. 154, 117–124 (2019). doi.org/10.1016/j.watres.2019.01.050 [CrossRef] [PubMed] [Google Scholar]
- W.R. Torres, C.H. Diaz Nieto, A. Prevoteau, K. Rabaey, V. Flexer, Lithium carbonate recovery from brines using membrane electrolysis. J. Membr. Sci. (2020). doi.org/10.1016/j.memsci.2020.118416 [Google Scholar]
- X. Li, Y. Mo, W. Qing, S. Shao, C.Y. Tang, Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membrane Sci. (2019). doi.org/10.1016/j.memsci. 2019.117317 [Google Scholar]
- S.H. Park, J.H. Kim, S.J. Moon, J.T. Jung, H.H. Wang, A. Ali, C.A. Quist-Jensen, F. Macedonio, E. Drioli, Y.M. Lee, Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J. Membr. Sci. (2020). doi.org/10.1016/j.memsci.2019.117683 [Google Scholar]
- W. Xu, D. Liu, L. He, Z. Zhao, A Comprehensive Membrane Process for Preparing Lithium Carbonate from High Mg/Li Brine. Membranes (2020). doi:10.3390/membranes10120371 [Google Scholar]
- Y. Liub, X. Ke, H. Zhu, R. Chen, X. Chen, X. Zheng, Y. Jin, B.V. der Bruggen, Treatment of raffinate generated via copper ore hydrometallurgical processing using a bipolar membrane electrodialysis system. Chem. Eng. J. (2020). doi.org/10.1016/j.cej.2019.122956 [Google Scholar]
- A.F.S. Foureaux, V.R. Moreira, Y.A.R. Lebron, L.V. de S. Santos, M.C.S. Amaral, A sustainable solution for fresh-water demand in mining sectors: Process water reclamation from POX effluent by membrane distillation. Sep. Purif. Technol. (2021). doi.org/10.1016/j.seppur.2020.117797 [Google Scholar]
- Water management, (Waihi Gold, 2011), https://livewaihigold-public.pantheonsite.io/?s=Reverse+osmosis Accessed 20 December 2020 [Google Scholar]
- S.M. Samaei, S.G. Trinidad, A. Altaee, Performance evaluation of reverse osmosis process in the post-treatment of mining wastewaters: Case study of Costerfield mining operations, Victoria, Australia. J. Water Proc. Eng. (2020). doi.org/10.1016/j.jwpe.2019.101116 [Google Scholar]
- Citor Desalinators, Mine Site Archives (2020) http://www.citor.com.au/product-category/minesites/. Accessed 20 December 2020 [Google Scholar]
- Australian mining, Veolia to deliver water treatment plant at gold mine https://www.australianmining.com.au/news/veoliadeliver-water-treatment-plant-gold_mine. Accessed 20 December 2020 [Google Scholar]
- R. Thiruvenkatachari, M. Francis, M. Cunnington, S. Su, Application of integrated forward and reverse osmosis for coal mine wastewater desalination. Sep. Purif. Technol. 163, 181-188 (2016). doi.org/10.1016/j.seppur.2016.02.034 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.