Open Access
Issue
E3S Web Conf.
Volume 283, 2021
2021 3rd International Conference on Civil, Architecture and Urban Engineering (ICCAUE 2021)
Article Number 02036
Number of page(s) 6
Section Urban Planning and Protection of Natural Environment Facilities
DOI https://doi.org/10.1051/e3sconf/202128302036
Published online 07 July 2021
  1. Chowdhury D., Santen L., (2000) Schadschneider A. Statistical physics of vehicular traffic and some related systems. Phys Rep, 329:199–129. [Google Scholar]
  2. Kaur, R., Sharma, S. (2017) Analysis of driver’s characteristics on a curved road in a lattice model. Physica A, 471:59–67. [Google Scholar]
  3. Peng, G.H., Kuang, H., Qing, L. (2018) Feedback control method in lattice hydrodynamic model under honk environment. Physica A, 509:651–656. [Google Scholar]
  4. Peng, G.H., Yang, S.H., Zhao, H.Z. (2018) New feedback control model in the lattice hydrodynamic model considering the historic optimal velocity difference effect. Commun. Theor. Phys,70:803–807. [Google Scholar]
  5. Jiang, R., Wu, Q.S., Zhu, Z.J. (2001) Full velocity difference model for a car-following theory. Phys Rev E, 64:017101. [Google Scholar]
  6. Tang, T.Q., Li, C.Y., Huang, H.J. (2010) A new car-following model with the consideration of the driver’s forecast effect. Phys lett A, 374:3951–3956. [Google Scholar]
  7. Zheng, L.J., Tian, C., Sun, D.H., Liu, W.N. (2012) A new car-following model with consideration of anticipation driving behavior. Nonlinear Dynam, 70, 1205–1211. [Google Scholar]
  8. Wang, T., Li, G.Y., Zhang, J., Li, S.B., Sun, T. (2019) The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization. Physica A 525, 566–575. [Google Scholar]
  9. Zhang, J., Wang, B., Li, S.B., Sun, T., Wang, T. (2020) Modeling and application analysis of car-following model with predictive headway variation. Physica A 540, 123–171. [Google Scholar]
  10. Tang, T.Q., Huang, H.J., Shang, H.Y. (2010) A new macro model for traffic flow with the consideration of the driver’s forecast effect. Phys Lett A, 374:1668–1672. [Google Scholar]
  11. Ge, H.X., Dai, S.Q., Dong, L.Y., Xue, Y. (2010) Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application. Phys Rev E, 70:066134–9. [Google Scholar]
  12. Wang, T., Gao, Z.Y., Zhao, X.M. (2006) Multiple velocity difference model and its stability analysis. Acta Phys Sin, 55:634–640. [Google Scholar]
  13. Peng, G.H., Sun, D.H. (2010) A dynamical model of car-following with the consideration of the multiple information of preceding cars. Phys lett A, 374:1694–1698. [Google Scholar]
  14. Liu, G.Q., Lyrintzis, A.S., Michalopoulos, P.G. (1998) Improved high-order model for freeway traffic flow. Transp Res Rec, 1644:37–46. [Google Scholar]
  15. Jiang, R., Wu, Q.S., Zhu, Z.J. (2002) A new continuum model for traffic flow and numerical tests. Transp Res B, 36 :405–419. [Google Scholar]
  16. Daganzo, C.F. (1995) Requiem for second-order fluid approximation of traffic flow. Transp Res B, 29:277–286. [Google Scholar]
  17. Del Castillo, J.M., Pintado, P., Benitez, F.G. (1994) The reactive time of drivers and the stability of traffic flow. Transp Res B, 28:35–60. [Google Scholar]
  18. Herrmann, M., Kerner, B.S. (1998) Local cluster effect in different traffic flow models. Physica A, 255:163–188. [CrossRef] [Google Scholar]
  19. Kerner, B.S., Konhauser, P. (1993) Cluster effect in initially homogeneous traffic flow. Phys Rev E, 48: R2335–R2338. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.