Open Access
Issue |
E3S Web Conf.
Volume 285, 2021
International Conference on Advances in Agrobusiness and Biotechnology Research (ABR 2021)
|
|
---|---|---|
Article Number | 04015 | |
Number of page(s) | 7 | |
Section | Livestock | |
DOI | https://doi.org/10.1051/e3sconf/202128504015 | |
Published online | 06 July 2021 |
- Yang, W., Kang, X., Yang, Q. et al. Review on the development of genotyping methods for assessing farm animal diversity. J Animal Sci Biotechnol 4, 2 (2013). [Google Scholar]
- Coffey, M. Dairy cows: in the age of the genotype, # phenotypeisking. Animal Frontiers, 10(2), 19-22 (2020). [Google Scholar]
- Weigel, K. A., VanRaden, P. M., Norman, H. D., & Grosu, H. A 100-Year Review: Methods and impact of genetic selection in dairy cattle—From daughter–dam comparisons to deep learning algorithms. Journal of dairy science, 100(12), 1023410250 (2017). [Google Scholar]
- Kaniyamattam, K., & De Vries, A. Agreement between milk fat, protein, and lactose observations collected from the Dairy Herd Improvement Association (DHIA) and a real-time milk analyzer. Journal of dairy science, 97(5), 2896-2908 (2014). [CrossRef] [PubMed] [Google Scholar]
- Halachmi, I., Guarino, M., Bewley, J., & Pastell, M. Smart animal agriculture: application of real-time sensors to improve animal well-being and production. Annual review of animal biosciences, 7, 403-425 (2019). [CrossRef] [PubMed] [Google Scholar]
- Martin, P., Barkema, H. W., Brito, L. F., Narayana, S. G., & Miglior, F. Symposium review: novel strategies to genetically improve mastitis resistance in dairy cattle. Journal of dairy science, 101(3), 2724-2736 (2018). [CrossRef] [PubMed] [Google Scholar]
- Kelton, D. F., Lissemore, K. D., & Martin, R. E. Recommendations for recording and calculating the incidence of selected clinical diseases of dairy cattle. Journal of dairy science, 81(9), 2502-2509 (1998). [CrossRef] [PubMed] [Google Scholar]
- Riekerink, R. O., Barkema, H. W., Kelton, D. F., & Scholl, D. T. Incidence rate of clinical mastitis on Canadian dairy farms. Journal of dairy science, 91(4), 1366-1377 (2008). [CrossRef] [PubMed] [Google Scholar]
- Pritchard, T., Coffey, M., Mrode, R., & Wall, E. Genetic parameters for production, health, fertility and longevity traits in dairy cows. Animal, 7(1), 34-46 (2013). [CrossRef] [PubMed] [Google Scholar]
- Govignon-Gion, A., Dassonneville, R., Baloche, G., & Ducrocq, V. Genetic evaluation of mastitis in dairy cattle in France. Interbull bulletin, 46, 121-126 (2012). [Google Scholar]
- Gengler, N., Soyeurt, H., Dehareng, F., Bastin, C., Colinet, F., Hammami, H., ... & Dardenne, P. Capitalizing on fine milk composition for breeding and management of dairy cows. Journal of dairy science, 99(5), 4071-4079 (2016). [CrossRef] [PubMed] [Google Scholar]
- Friedrichs, P., Bastin, C., Dehareng, F., Wickham, B., & Massart, X. Final OptiMIR Scientific and Expert Meeting: From milk analysis to advisory tools. Palais des Congrès, Namur (Belgium), 16-17 April 2015. BASE. (2015). [Google Scholar]
- Friggens, N. C., Ridder, C., & Løvendahl, P. On the use of milk composition measures to predict the energy balance of dairy cows. Journal of Dairy Science, 90(12), 5453-5467. (2007). [CrossRef] [PubMed] [Google Scholar]
- Batanov, S., Baranova, I., & Starostina, O. Innovative methods in study of animal’s conformation. Bulgarian Journal of Agricultural Science, 26(6), 1286-1291. (2020). [Google Scholar]
- Huang, L., Li, S., Zhu, A., Fan, X., Zhang, C., & Wang, H. Non-contact body measurement for qinchuan cattle with LiDAR sensor. Sensors, 18(9), 3014 (2018). [Google Scholar]
- Koltes, J. E., Cole, J. B., Clemmens, R., Dilger, R. N., Kramer, L. M., Lunney, J. K., ... & Reecy, J. M. A vision for development and utilization of high-throughput phenotyping and big data analytics in livestock. Frontiers in genetics, 10, 1197 (2019). [CrossRef] [PubMed] [Google Scholar]
- Cole, J. B., & VanRaden, P. M. Symposium review: Possibilities in an age of genomics: The future of selection indices. Journal of dairy science, 101(4), 3686-3701 (2018). [CrossRef] [PubMed] [Google Scholar]
- Peñagaricano, F. Genetics and genomics of dairy cattle. In Animal Agriculture (pp. 101119). Academic Press (2020). [Google Scholar]
- Cole, J. B., Eaglen, S. A., Maltecca, C., Mulder, H. A., & Pryce, J. E. The future of phenomics in dairy cattle breeding. Animal Frontiers, 10(2), 37-44 (2020). [Google Scholar]
- VanRaden, P. M.. An example from the dairy industry: the net merit index. In Proceedings of the Beef Improvement Federation’s 37th Annual Research Symposium and Annual Meeting (pp. 96-100). (2005, July). [Google Scholar]
- Cole, J. B., Dürr, J. W., & Nicolazzi, E. L. Invited review: The future of selection decisions and breeding programs: What are we breeding for, and who decides? Journal of Dairy Science (2021). [Google Scholar]
- Georges, M., Charlier, C., & Hayes, B. Harnessing genomic information for livestock improvement. Nature Reviews Genetics, 20(3), 135-156 (2019). [CrossRef] [PubMed] [Google Scholar]
- Liu, X., Wang, Y., Tian, Y., Yu, Y., Gao, M., Hu, G., ... & Zhang, Y. Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proceedings of the Royal Society B: Biological Sciences, 281(1780), 2013 3368 (2014). [Google Scholar]
- Liu, X., Wang, Y., Guo, W., Chang, B., Liu, J., Guo, Z., ... & Zhang, Y. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nature communications, 4(1), 1-11 (2013). [Google Scholar]
- Genovese, G., Friedman, D. J., Ross, M. D., Lecordier, L., Uzureau, P., Freedman, B. I., ... & Pollak, M. R. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science, 329(5993), 841-845 (2010). [CrossRef] [PubMed] [Google Scholar]
- Bett, B., Kiunga, P., Gachohi, J., Sindato, C., Mbotha, D., Robinson, T., ... & Grace, D. Effects of climate change on the occurrence and distribution of livestock diseases. Preventive veterinary medicine, 137, 119-129 (2017). [CrossRef] [PubMed] [Google Scholar]
- Grisart, B., Coppieters, W., Farnir, F., Karim, L., Ford, C., Berzi, P., ... & Snell, R. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome research, 12(2), 222-231 (2002). [CrossRef] [PubMed] [Google Scholar]
- Littlejohn, M. D., Henty, K. M., Tiplady, K., Johnson, T., Harland, C., Lopdell, T., ... & Davis, S. R. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nature communications, 5(1), 1-8 (2014). [Google Scholar]
- Liu, Y., Li, D., Li, H., Zhou, X., & Wang, G. A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Molecular biology reports, 38(1), 83-88 (2011). [CrossRef] [PubMed] [Google Scholar]
- Zeng, L., Cao, Y., Wu, Z., Huang, M., Zhang, G., Lei, C., & Zhao, Y. A missense mutation of the HSPB7 gene associated with heat tolerance in Chinese Indicine cattle. Animals, 9(8), 554 (2019). [Google Scholar]
- Igoshin, A. V., Yurchenko, A. A., Belonogova, N. M., Petrovsky, D. V., Aitnazarov, R. B., Soloshenko, V. A., ... & Larkin, D. M. Genome-wide association study and scan for signatures of selection point to candidate genes for body temperature maintenance under the cold stress in Siberian cattle populations. BMC genetics, 20(1), 5-14 (2019). [CrossRef] [PubMed] [Google Scholar]
- Yurchenko, A. A., Daetwyler, H. D., Yudin, N., Schnabel, R. D., Vander Jagt, C. J., Soloshenko, V., ... & Larkin, D. M. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Scientific reports, 8(1), 1-16 (2018). [CrossRef] [PubMed] [Google Scholar]
- Bertolini, F., Servin, B., Talenti, A. et al. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genet Sel EVol 50, 57 (2018). [CrossRef] [PubMed] [Google Scholar]
- Roy Costilla, Kathryn E. Kemper, Enda M. Byrne, Laercio R. Porto-Neto, Roberto Carvalheiro, Deirdre C. Purfield, Jennifer L. Doyle, Donagh P. Berry, Stephen S. Moore, Naomi R. Wray, Ben J. Hayes. Genetic control of temperament traits across species: association of autism spectrum disorder risk genes with cattle temperament. Genetics Selection Evolution, 52 (1) (2020). [Google Scholar]
- Graham K. Barrell. An Appraisal of Methods for Measuring Welfare of Grazing Ruminants Front. Vet. Sci., 28 August (2019). [Google Scholar]
- Webb LE, Veenhoven R, Harfeld JL, Jensen MB. What is animal happiness? Ann NY Acad Sci. 1438:62–78 (2019). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.