Open Access
Issue
E3S Web Conf.
Volume 285, 2021
International Conference on Advances in Agrobusiness and Biotechnology Research (ABR 2021)
Article Number 07035
Number of page(s) 9
Section Agricultural Machinery
DOI https://doi.org/10.1051/e3sconf/202128507035
Published online 06 July 2021
  1. G. Binnig, C. F. Quate, and C. Gerber, Atomic force microscope, Physical review letters, 56 (9) (1986) P. 930. [Google Scholar]
  2. S. Liu and Y. Wang, Application of AFM in microbiology: a review, Scanning, 32 (2) (2010) pp. 61–73. [Google Scholar]
  3. Y. Seo and W. Jhe, Atomic force microscopy and spectroscopy, Reports on Progress in Physics, 71 (1) (2007) P. 016101. [Google Scholar]
  4. J. L. Hutter and J. Bechhoefer, Calibration of atomic force microscope tips, Review of Scientific Instruments, 64 (7) (1993) pp. 1868–1873. [Google Scholar]
  5. B. Drake, C. Prater, A. Weisenhorn, S. Gould, T. Albrecht, C. Quate, D. Cannell, H. Hansma and P. Hansma, Imaging crystals, polymers, and processes in water with the atomic force microscope, Science, 243 (4898) (1989) pp. 1586–1589. [Google Scholar]
  6. M. Marrese, V. Guarino and L. Ambrosio, Atomic force microscopy: a powerful tool to address scaffold design in tissue engineering, Journal of functional biomaterials, 8 (1) (2017) P. 7. [Google Scholar]
  7. N. Jalili and K. Laxminarayana, A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences, Mechatronics, 14 (8) (2004) pp. 907–945. [Google Scholar]
  8. H. G. Hansma and L. Pietrasanta, Atomic force microscopy and other scanning probe microscopies, Current opinion in chemical biology, 2 (5) (1998) pp. 579–584. [Google Scholar]
  9. M. R. Bahrami and A. B. Abeygunawardana, Modeling and simulation of dynamic contact atomic force microscope, in Advances in Mechanical Engineering, Springer, pp. 109–118 (2019). [Google Scholar]
  10. M. R. Bahrami and B. Abeygunawardana, Modeling and simulation of tapping mode atomic force microscope through a bond graph, in Advances in Mechanical Engineering, Springer, pp. 9–15 (2018). [Google Scholar]
  11. M. R. Bahrami, A. Ramezani and K. G. Osquie, Modeling and simulation of noncontact atomic force microscope, in ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, American Society of Mechanical Engineers Digital Collection (2010), pp. 565–569. [Google Scholar]
  12. A. Sebastian, M. Salapaka, D. Chen and J. Cleveland, Harmonic analysis based modeling of tapping mode AFM, in Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), IEEE (1999), Vol. 1, pp. 232–236. [Google Scholar]
  13. S. Belikov and S. Magonov, Classification of dynamic atomic force microscopy control modes based on asymptotic nonlinear mechanics, in 2009 American Control Conference, IEEE (2009), pp. 979–984. [Google Scholar]
  14. S. Hu and A. Raman, Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy, Applied Physics Letters, 91 (12) (2007) P. 123106. [Google Scholar]
  15. F. J. Gießibl, A direct method to calculate tip-sample forces from frequency shifts in frequency modulation atomic force microscopy, Applied Physics Letters, 78 (1) (2001) pp. 123–125. [Google Scholar]
  16. J. Melcher, S. Hu and A. Raman, Equivalent point mass models of continuous atomic force microscope probes, Applied Physics Letters, 91 (5) (2007) P. 053101. [Google Scholar]
  17. M. R. Bahrami, Dynamic analysis of atomic force microscope in tapping mode, Vibroengineering PROCEDIA, 32 (2020) pp. 13–19. [Google Scholar]
  18. M. R. Bahrami, Modeling of noncontact atomic force microscope with two term excitations, in IOP Conference Series: Materials Science and Engineering, IOP Publishing (2020), Vol. 971, P. 042052. [Google Scholar]
  19. M. R. Bahrami, Nonlinear dynamic analysis of noncontact atomic force microscope, in 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR), IEEE (2020), pp. 49–52. [Google Scholar]
  20. M. R. Bahrami, Modeling of physical systems through bond graphs, st, Petersburg: Polytech Uni Pub, St. Petersburg. [Google Scholar]
  21. C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory, Springer Science & Business Media (2013). [Google Scholar]
  22. A. H. Nayfeh, Perturbation Methods, John Wiley & Sons (2008). [Google Scholar]
  23. M. Markakis, The jump phenomenon associated with the dynamics of the duffing equation, Physics Open, 5 (2020) P. 100042. [Google Scholar]
  24. A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, John Wiley & Sons (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.