Open Access
Issue
E3S Web Conf.
Volume 286, 2021
10th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2021)
Article Number 01003
Number of page(s) 10
Section Thermal Equipments and Processes
DOI https://doi.org/10.1051/e3sconf/202128601003
Published online 12 July 2021
  1. Z. Kadhim, M. Kassim, A. Hassan, Effect of integral finned tube on heat transfer characteristics for cross flow heat exchanger, International Journal of Computer Applications (0975-8887), 139 (2016) [Google Scholar]
  2. He Fa Jiang, Cao Wei Wu, Yan Ping, Experimental investigation of heat transfer and flowing resistance for air flow cross over spiral finned tube heat exchanger, Energy Procedia 17, 741 (2012) [Google Scholar]
  3. M.S. Baba, M. Bhagvanth Rao, A. V. Sita Rama Raju, Experimental study of convective heat transfer in a finned tube counter flow heat exchanger with Fe3O4 - water nanofluid, International Journal of Mechanical Engineering and Technology (IJMET), 500 (2017) [Google Scholar]
  4. A.H. Dhumal, G.M. Kerkal, K.T. Pawale, Heat transfer enhancement for tube in tube heat exchanger using twisted tape inserts, IJAERS 4, 89 (2017) [CrossRef] [Google Scholar]
  5. S. Albetel, A. Rus, E. David, V. Martian, The amplitude influence on the thermal and hydraulic performances for a wavy air fin in a compact heat exchanger used in agriculture applications, E3S Web of Conferences 180, 01006, TE-RE-RD, (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  6. S. Tasheva, Z. Hodjeva, V. Rasheva, G. Valtchev, B. Milenkov, Investigation of the hydrodynamics of a floating head heat exchanger, Heat Engineering 2 (5), 11, (2013) [Google Scholar]
  7. S. Valchev, I. Mihaylov, Analysis of energy efficiency of air handling unit with integrated air to air heat exchanger in heating mode, E3S Web of Conferences 207, PE-PM, 01002 (2020) [CrossRef] [Google Scholar]
  8. M. Zaidan, A. Alkumait, T. Ibrahim, Assessment of heat transfer and fluid flow characteristics within finned flat tube, Case Studies in Thermal Engineering 12, 557 (2018) [CrossRef] [Google Scholar]
  9. W. Osley, P. Droegemueller, P. Ellerby, CFD Investigation of Heat Transfer and Flow Patterns in Tube Side Laminar Flow and the Potential for Enhancement, Chem. Eng. Trans. J. 35, 997 (2013) [Google Scholar]
  10. K. Majewski, S. Gradliel, CFD Simulations of Heat Transfer in Internally Helically Ribbed Tubes, Chem. Process Eng. J. 37 (2), 251 (2016) [CrossRef] [Google Scholar]
  11. S. Singh, K. Sorensen, T. Condra, Multiphysics numerical modeling of a fin and tube heat exchanger, Proceedings of the 56th SIMS, 383 (2015) [CrossRef] [Google Scholar]
  12. D. Jung, D. N. Assanis, Numerical modeling of cross flow compact heat exchanger with louvered fins using thermal resistance concept, SAE Technical Paper Series, (2006) [Google Scholar]
  13. S. Arena, E. Casti, J. Gasia, L. F. Cabea, G. Cau, Numerical simulation of a finned- tube LHTES system: influence of the mushy /one constant on a phase change behavior, Energy Procedia 126 (201709), 517 (2017) [CrossRef] [Google Scholar]
  14. Lin Wei, Guorong Zhu, Zhijiang Jin, Numerical simulation of heat transfer in finned tube of heat recovery unit using fluid-solid coupled method, Advances in Mechanical Engineering, (2015) [Google Scholar]
  15. Shubham Singh, Venkata Krishnan K., Spandana, H., Mahesh Kumar N., P.S. Kulkarni, Numerical study of the heat transfer enhancement of circular tube bank fin heat exchanger with vortex generators, 20th Annual CFD Symposium - Bangalore, (2018) [Google Scholar]
  16. R. Petkova-Slipets, K. Yordanov, P. Zlateva, A. comparative thermal analysis of walls composed of traditional and alternative building materials, Civ. and Env. Eng. 16 (2), 388 (2020) [CrossRef] [Google Scholar]
  17. P. Zlateva, K. Yordanov, R. Petkova-Slipets, A. study of the thermal properties of an alternative straw-containing building material, E3S Web of Conferences 207, 01004, PE-PM, (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  18. C. Oon, H. Togun, S. Kazi, A. Badarudin, M. Zubir, E. Sadeghinezhad, Numerical simulation of heat transfer to separation air flow in an annular pipe, Int. Commun. Heat Mass. J. 39, 1176 (2012) [CrossRef] [Google Scholar]
  19. E. Dimofte, F. Popescu, I. Ion, Numerical modelling of mixing fluids at different temperatures, Proceedings of TE-RE-RD, 35 (2016) [Google Scholar]
  20. R. Petkova-Slipets, P. Zlateva, An analysis of the structure and thermal conductivity of hollow microsphere filled syntactic foams, Civ. and Env. Eng. 0 (0), (2019) [Google Scholar]
  21. G. Popov, K. Klimentov, B. Kostov, R. Dimitrova, Determining the minor loss coefficient of cone diffusers, E3S Web of Conferences 207, PE-PM, 04004 (2020) [Google Scholar]
  22. B. Gilev, N. Hinov, H. Ibrishimov, Mathematical model of induction heating with heat transfer of cylindrical body for pressing treatment. Proceedings of International Conference on High Technology for Sustainable Development HiTech, (2019) [Google Scholar]
  23. N.L. Evstatieva, B.I. Evstatiev, Modelling of the thermal conditions of a LED driver, 26th International Symposium for Design and Technology in Electronic Packaging (SIITME), (2020) [Google Scholar]
  24. P. Zlateva, K. Yordanov, Experimental study of heat pump type air-water for heating system performance, E3S Web of Conferences 112, 01007, TE-RE-RD, (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.