Open Access
E3S Web Conf.
Volume 286, 2021
10th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2021)
Article Number 03024
Number of page(s) 10
Section Rural Development
Published online 12 July 2021
  1. G.G. Chase, Course Solids Notes 10, The University of Akron (2010); [Google Scholar]
  2. C. Mircea, F. Nenciu, V. Vlädut, G. Voicu, D. Cujbescu, I. Gägeanu, I. Voicea, Increasing the performance of cylindrical separators for cereal cleaning, by using an inner helical coil, INMATEH Agric. Engineer., 62, No.3, pp. 249–258, (2020) ; [CrossRef] [Google Scholar]
  3. L.A. Fullard, E.C.P. Breard, C.E. Davies, A.J.R. Godfrey, M. Fukuoka, A. Wade, J. Dufek and G. Lube, The dynamics of granular flow from a silo with two symmetric openings (2019); [Google Scholar]
  4. M. Ostadi, Mechanics of Dry Granular Flow through an Opening, Master of Science in Geotechnical Engineering Department of Civil and Environmental Engineering, University of Alberta, (2019); [Google Scholar]
  5. H.H.N.D. Haggalla, K.I.U. Nanayakkara and H.M.Y.C. Mallikarachchi, Simulating dynamic discharge of infill bulk material stored in cylindrical silos, Society of Structural Engineers, Sri Lanka - Annual sessions, (2019); [Google Scholar]
  6. A. Jacobs, B. Moboladea, N. Bunindrob, D. Sahoob, Y. Rajashekarb, Traditional methods of food grains preservation and storage in Nigeria and India, Annals of Agric. Seien. 64, pp. 196–205, (2019); [CrossRef] [Google Scholar]
  7. R. Jackson, J. Rheol. 30, 907, (1986); [Google Scholar]
  8. G. Gudejus, D. Kolymbas and J. Tejchman, Powder Technology 48, 8, (1986); [Google Scholar]
  9. A.V. Potapov, C.S. Campbell, Physics of Fluids 8, 2884, (1996); [Google Scholar]
  10. J. Tomas, Modelling of instationary discharge behaviour of cohesive particulate solids out of bunkers, Chemie-Technik 43(8), pp. 307–309, (1991); [Google Scholar]
  11. D. Barletta, G. Donsi, G. Ferrari, M. Poletto, P. Russo, Solid flow rate prediction in silo discharge of aerated cohesive powders. AIChE J. 53(9), pp. 2240–2253, (2007); [CrossRef] [Google Scholar]
  12. R. Baserinia, I.C. Sinka, Mass flow rate of fine and cohesive powders under differential air pressure, Powder Technology 334, 173–182, (2018); [CrossRef] [Google Scholar]
  13. W.A. Beverloo, H.A. Leniger, J. van de Velde, The flow of granular solids through orifices, Chem. Engineer. Scien., 15(3-4), pp. 260–269, (1961); [CrossRef] [Google Scholar]
  14. A.J. Sadowski, J.M. Rotter, Study of Buckling in Steel Silos under Eccentric Discharge Flows of Stored Solids, J. Eng. Mech. 136:769–776, (2010); [CrossRef] [Google Scholar]
  15. J.M. Rotter, Silo and hopper design for strength, Bulk Solids Handling: Equipment Selection and Operation Edited by Don McGlinchey, Blackwell Publishing Ltd. ISBN: 978-1-405-15825-1, (2010); [Google Scholar]
  16. H. Frederiksen, D. Dänut. M. Masinistru. A. Greculescu, Sisteme pentru depozitarea furajelor. Standarde de fermä, Danish Agricultural Advisory Service, (2010);A.W. Roberts, Review of silo loadings associated with the storage of bulk granular materials, In: CIGR-AgEng International Conference of Agricultural Engineering, Valencia, Spain, pp. 8-12, (2012); [Google Scholar]
  17. R. Zevenhoven, Powder mechanics & powder flow testing (flow / no flow), Abo Akademi University, (2018); [Google Scholar]
  18. A.W. Jenike, J.R. Johanson, Bin loads, Proc. Amer. Soc. Civil Eng., J. Structural Div. 94 (ST4):1011–1041, (1968); [CrossRef] [Google Scholar]
  19. J. Carsona, D. Craig, Silo design codes: Their limits and inconsistencies, The 7th World Congress on Particle Technology (WCPT7), Publishing Elsevier, (2015); [Google Scholar]
  20. C. Maraveas, Concrete Silos: Failures, Design Issues and Repair/Strengthening Methods, Applied Sciences, MDPI, (2020); [Google Scholar]
  21. C. Bräcäcescu, P. Gägeanu, G. Bunduchi, A. Zaica, Considerations on technical equipment used for cleaning and sorting seed mixtures based on aerodynamic principle, Engineering for rural development, Jelgava, (2018); [Google Scholar]
  22. J. Hernandez-Cordero, R. Zenit, E. Geffroy, B. Mena and R.R. Huilgol, Experiments on granular flow in a hexagonal silo: a design that minimizes dynamic stresses, Korea- Australia Rheology Journal 12, No. 1, pp. 55–67, (2000); [Google Scholar]
  23. R. Hesse, D. Gilberg, K. Steiner, S. Antonyuk, Modelling of granular flow on micro- and macroscopic scales with calibration using experimental and numerical setups, Proceedings of the 8th international conference on discrete element methods (DEM8), (2019); [Google Scholar]
  24. M.J. Sandlin, An Experimental and Numerical Study of Granular Hopper Flows, Institute of Technology, Georgia, USA, (2013); [Google Scholar]
  25. I. Sielamowicz, R. Balevicius, Experimental and computational analysis of granular material flow in model silos, IPPT Reports on Fundamental Technological Research, (2013); [Google Scholar]
  26. K.P. Shah, Fundamentals, Troubleshooting & Maintenance of Ash Handling Plants and Pneumatic Conveying Systems for Bulk Materials,, (2017); [Google Scholar]
  27. [Google Scholar]
  28. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.