Open Access
E3S Web Conf.
Volume 286, 2021
10th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2021)
Article Number 04014
Number of page(s) 15
Section Miscellaneous
Published online 12 July 2021
  1. Izadifard, R.A., Mollaei, S. and Omran, M.E.N. “Preparing pressure-impulse diagrams for reinforced concrete columns with constant axial load using single degree of freedom approach”, International Journal of Advancements in Technology, 2016. [Google Scholar]
  2. [Google Scholar]
  3. Bathe, K.J. “Frontiers in finite element procedures”. Klaus-Jurgen Bathe, 2006. [Google Scholar]
  4. Chopra, A.K. “Dynamics of structures”, (pp. 174–196). Upper Saddle River, NJ: Pearson Education, 2012. [Google Scholar]
  5. Ebeling, Robert M., Russell A. Green, and Samuel E. French. “Accuracy of response of single-degree-of-freedom systems to ground motion”, Army Corps of Engineers, 97–97, 1997. [Google Scholar]
  6. [Google Scholar]
  7. Li, P.S. and Wu, B.S.“An iteration approach to nonlinear oscillations of conservative single-degree-of-freedom systems”, Acta Mechanica, 170(1-2), pp. 69–75, 2004. [Google Scholar]
  8. [Google Scholar]
  9. Newmark, N.M.“A method of computation for structural dynamics”, Journal of the engineering mechanics division, 85(3), pp. 67–94, 1959. [CrossRef] [Google Scholar]
  10. Veletsos, A.S., Newmark, N.M. and Chelapati, C.V. January. “Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motions”, In Proceedings of the 3rd world conference on earthquake engineering (Vol. 2, pp. 663–682), 1965. [Google Scholar]
  11. Wang, Y. and Inman, D.J. “Autonomous Gust Alleviation in UAVs”, Advanced UAV Aerodynamics, Flight Stability and Control: Novel Concepts, Theory and Applications, p. 465, 2017. [Google Scholar]
  12. [Google Scholar]
  13. Gawronski, W.“Advanced structural dynamics and active control of structures”, Springer Science & Business Media, 2004. [Google Scholar]
  14. [Google Scholar]
  15. Benaroya, H., Nagurka, M. and Han, S.“Mechanical vibration: analysis, uncertainties, and control”, CRC Press, 2017. [Google Scholar]
  16. [Google Scholar]
  17. Paz, M.“International handbook of earthquake engineering: codes, programs, and examples”, Springer Science & Business Media, 2012. [Google Scholar]
  18. [Google Scholar]
  19. Wu, B.S., & Lim, C.W. “Large amplitude non-linear oscillations of a general conservative system”, International Journal of Non-Linear Mechanics, 39(5),859–870, 2004. [CrossRef] [Google Scholar]
  20. [Google Scholar]
  21. Chopra, A.K., Goel, R.K., & Chintanapakdee, C. “Statistics of single-degree-of-freedom estimate of displacement for pushover analysis of buildings”, Journal of structural engineering, 129(4),459–469, 2003. [CrossRef] [Google Scholar]
  22. [Google Scholar]
  23. Clough, R.W. and Penzien, J. “Dynamics of Structures (3rd)”, Computers & Structures, Inc., California, pp. 342–344, 2003. [Google Scholar]
  24. [Google Scholar]
  25. Craig, R.R., & Kurdila, A.J. “Fundamentals of structural dynamics”, John Wiley & Sons, 2006. [Google Scholar]
  26. Gatti, P.L. “Applied Structural and Mechanical Vibrations: Theory and Methods”. CRC Press, 2014. [Google Scholar]
  27. [Google Scholar]
  28. Géradin, M., & Rixen, D.J. “Mechanical vibrations: theory and application to structural dynamics”. John Wiley & Sons, 2014. [Google Scholar]
  29. Anderson, J.C. and Naeim, F. “Basic structural dynamics”, John Wiley & Sons, 2012. [Google Scholar]
  30. [Google Scholar]
  31. Paz, M. and Leigh, W. “Structural Dynamics: Theory and Computation, 5th Ed”, Springer Science & Business Media, N.Y, 2004. [Google Scholar]
  32. Rao, S.S. “Mechanical vibrations in SI units”, Pearson Higher Ed, 2017. [Google Scholar]
  33. Chang, S.Y. “Studies of Newmark method for solving nonlinear systems:(I) basic analysis”, Journal of the Chinese Institute of Engineers, 27(5), pp. 651–662, 2004. [CrossRef] [Google Scholar]
  34. [Google Scholar]
  35. Chang, S.Y. “Studies of Newmark method for solving nonlinear systems:(II) Verification and guideline”, Journal of the Chinese institute of engineers, 27(5), pp. 663–675, 2004. [CrossRef] [Google Scholar]
  36. [Google Scholar]
  37. Kazakov, K.S. “Dynamic Response of a Single Degree of Freedom (SDOF) System in some Special Load Cases, based on the Duhamel Integral”, In International Conference on Engineering Optimization (pp. 01–05), 2008. [Google Scholar]
  38. Kurt, N., & Çevik, M. “Polynomial solution of the single degree of freedom system by Taylor matrix method”, Mechanics Research Communications, 35(8),530–536, 2008. [CrossRef] [Google Scholar]
  39. Wu, J.S. “Analytical and numerical methods for vibration analyses”, John Wiley & Sons, 2013. [Google Scholar]
  40. Thomson, W. “Theory of vibration with applications”, CrC Press, 2018. [Google Scholar]
  41. Mohsenian, V., Padashpour, S. and Hajirasouliha, I. “Seismic reliability analysis and estimation of multilevel response modification factor for steel diagrid structural systems”, Journal of Building Engineering, 29, p. 101168, 2020. [CrossRef] [Google Scholar]
  42. [Google Scholar]
  43. Pang, G., Koper, K.D., Mesimeri, M., Pankow, K.L., Baker, B., Farrell, J., Holt, J. “Seismic analysis of the 2020 Magna, Utah, earthquake sequence: Evidence for a listric Wasatch fault”, Geophysical Research Letters, 47(18), p. e2020GL089798, 2020. [CrossRef] [Google Scholar]
  44. Mitseas, I.P. and Beer, M., 2020. “Fragility analysis of nonproportionally damped inelastic MDOF structural systems exposed to stochastic seismic excitation”, Computers & Structures, 226, p. 106129. [CrossRef] [Google Scholar]
  45. [Google Scholar]
  46. Mitseas, I.P. and Beer, M., 2020. “First-excursion stochastic incremental dynamics methodology for hysteretic structural systems subject to seismic excitation”, Computers & Structures, 242, p. 106359. [CrossRef] [Google Scholar]
  47. [Google Scholar]
  48. Babaei, M. “A general approach to approximate solutions of nonlinear differential equations using particle swarm optimization”, Applied Soft Computing, 13(7), pp. 3354–3365, 2013. [CrossRef] [Google Scholar]
  49. Rahmani, M., Scurtu, I.C., & Moslemi Petrudi, A. (2020). Analytical and Dynamic study of Pulled Mass Nonlinear Vibration by Two Cables using Newton’s Harmonic Balance Method. Technium: Romanian Journal of Applied Sciences and Technology, 2(2),79–86. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.