Open Access
Issue
E3S Web Conf.
Volume 287, 2021
International Conference on Process Engineering and Advanced Materials 2020 (ICPEAM2020)
Article Number 03002
Number of page(s) 7
Section Process Systems Engineering & Optimization
DOI https://doi.org/10.1051/e3sconf/202128703002
Published online 06 July 2021
  1. BP Energy Outlook, https://www.bp.com/content/dam/bp/businesssites/en/glo bal/corporate/pdfs/energy-economics/energy-outlook/bp-energyoutlook-2019.pdf [accessed 16th August 2019]. [Google Scholar]
  2. Gurubalana A., Maiyaa M.P., Geoghegan P.J., A comprehensive review of liquid desiccant air conditioning system, Applied Energy 254 (2019) 113673. [Google Scholar]
  3. Sun Y., Huang G., Li Z., Wang S., Multiplexed optimization for complex air conditioning systems, Building and Environment 65 (2013) 99–108. [Google Scholar]
  4. Arshad M.U., Ghani M.U., Ullaha A., Gungor A., Zaman M., Thermodynamic analysis and optimization of double effect absorption refrigeration system using genetic algorithm, Energy Conversion and Management 192 (2019) 292–307. [Google Scholar]
  5. Zhao L., Cai W., Ding X., Chang W., Model-based optimization for vapor compression refrigeration cycle, Energy 55 (2013) 392–402. [Google Scholar]
  6. Torrella E., Larumbe J.A., Cabello R., Llopis R., Sanchez D., Energy comparison of intermediate configurations in two-stage vapor compression refrigeration systems, Energy 36 (2011) 4119–4124. [Google Scholar]
  7. Baakeem S.S., Orfi J., Alabdulkarem A., Optimization of a multistage vapor-compression refrigeration system for various refrigerants, Applied Thermal Engineering 136 (2018) 84–96. [Google Scholar]
  8. Esfahani I.J., Kang Y.T., Yoo C., A high efficient combined multi-effect evaporation absorption heat pump and vapor-compression refrigeration part 1, Energy 75 (2014) 312–326. [Google Scholar]
  9. Gebreslassie B.H., Guillen-Gosalbez G., Jimenez L., Boer D., Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment, Appl. Energy 86 (2009) 1712–1722. [Google Scholar]
  10. J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948. [Google Scholar]
  11. Khare A., Rangnekar S., A review of particle swarm optimization and its applications in Solar Photovoltaic system, Applied Soft Computing 13 (2013) 2997–3006. [Google Scholar]
  12. Mitchell, Melanie (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press. ISBN 9780585030944. [Google Scholar]
  13. Deb K., Practical Optimization Using Evolutionary Methods, KanGAL Report Number 2005008, http://www.iitk.ac.in/kangal [Google Scholar]
  14. Michalewicz Z., Genetic Algorithms, Springer Verlag, 1995. [Google Scholar]
  15. She X., Cong L., Nie B., Leng G., Peng H., Chen Y., Zhang X., Wen T., Yang H., Luo, Y., Energy-efficient and - economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review, Applied Energy 232 (2018) 157–186 [Google Scholar]
  16. Deb K., Practical Optimization Using Evolutionary Methods, KanGAL Report Number 2005008, http://www.iitk.ac.in/kangal [Google Scholar]
  17. J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948. [Google Scholar]
  18. Marini F., Walczak B., Particle swarm optimization (PSO). A tutorial, Chemometrics and Intelligent Laboratory Systems 149 (2015) 153–165. [Google Scholar]
  19. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220 (4598) (1983) 671. [Google Scholar]
  20. Amine K., Multiobjective Simulated Annealing: Principles and Algorithm Variants, Advances in Operations Research, https://doi.org/10.1155/2019/8134674 [Google Scholar]
  21. Vicente J.D., Lanchares J., Hermida R., Placement by thermodynamic simulated annealing, Physics Letters A 317 (2003) 415–423, doi: 10.1016/j.physleta.2003.08.070. [Google Scholar]
  22. K.H. Hoffmann, A. Franz, P. Salamon, Phys. Rev. E 66 (2002) 046706. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.