Open Access
E3S Web Conf.
Volume 287, 2021
International Conference on Process Engineering and Advanced Materials 2020 (ICPEAM2020)
Article Number 03009
Number of page(s) 6
Section Process Systems Engineering & Optimization
Published online 06 July 2021
  1. Klaassen, R., Feron P.H.M., Jansen A.E. Membrane Contactors in Industrial Applications. Chem Eng Res Des. 2005 Mar;83(3):234–246. [Google Scholar]
  2. Flak-Pedersen, O., Gronvold, M.S., Nokleby, P., Bjerve, F., Svendsen, H.F. CO2 Capture with membrane contactor.pdf. Int J Green Energy. 2005;157–165. [Google Scholar]
  3. Li, J.-L., Chen B.-H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol. 2005 Feb;41(2):109–122. [Google Scholar]
  4. Hoff K.A., Svendsen H.F. Membrane contactors for CO2 absorption-Application, modeling and mass transfer effects. Chem Eng Sci. 2014 Sep;116:331–341. [Google Scholar]
  5. Saidi, M. Process assessment and sensitivity analysis of CO2 capture by aqueous methyldiethanolamine + piperazine blended solutions using membrane contactor: Model development of kinetics and mass transfer rate. Sep Purif Technol. 2018;204(April):185–195. [Google Scholar]
  6. Chian, V., Shah, N., Chachuat, B. Modeling for design and operation of high-pressure membrane contactors in natural gas sweetening. Chem Eng Res Des. 2018;1–15. [Google Scholar]
  7. Khan, A.A., Halder G.N., Saha A.K. Comparing CO2 removal characteristics of aqueous solutions of monoethanolamine, 2-amino-2-methyl-1-propanol, methyldiethanolamine and piperazine through absorption process. Int J Greenh Gas Control. 2016;50:179–189. [Google Scholar]
  8. Ibrahim, A.Y., Ashour F.H., Ghallab A.O., Ali, M. Effects of piperazine on carbon dioxide removal from natural gas using aqueous methyl diethanol amine. J Nat Gas Sci Eng. 2014;21:894–909. [Google Scholar]
  9. Ghalib, L., Si, B., Mohd, W., Mazari, S. Fluid Phase Equilibria Modeling the effect of piperazine on CO 2 loading in MDEA / PZ mixture. Fluid Phase Equilib. 2017;434:233–243. [Google Scholar]
  10. Khan, A.A., Halder, G.N., Saha, A.K. Experimental investigation on efficient carbon dioxide capture using piperazine (PZ) activated aqueous methyldiethanolamine (MDEA) solution in a packed column. Int J Greenh Gas Control. 2017;64(July):163–173. [Google Scholar]
  11. Abotaleb, A., El-Naas M.H., Amhamed, A. Enhancing gas loading and reducing energy consumption in acid gas removal systems: A simulation study based on real NGL plant data. J Nat Gas Sci Eng. 2017;1–10. [Google Scholar]
  12. Chan, Z.P., Li, L., Kang, G., Ab Manan, N., Cao, Y., Wang, T. Deep CO2 removal using high pressure membrane contactors with low liquid-to-gas ratio. Chem Eng Res Des. 2020; [Google Scholar]
  13. Thermodynamics, J.C., Sobrino, M., Concepción, E.I., Gómez-hernández, Á., Martín, M.C., Segovia, J.J. Viscosity and density measurements of aqueous amines at high pressures : MDEA-water and MEA-water mixtures for CO 2 capture. J Chem Thermodyn. 2016;98:231–241. [Google Scholar]
  14. Kang, G., Phak, Z., Bt, S., Saleh, M., Cao, Y. Removal of high concentration CO 2 from natural gas using high pressure membrane contactors. Int J Greenh Gas Control. 2017;60:1–9. [Google Scholar]
  15. Weiland R.H., Dingman J.C., Cronin D.B. Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide. J Chem Eng Data. 1997;42(5):1004–1006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.