Open Access
Issue
E3S Web Conf.
Volume 288, 2021
International Symposium “Sustainable Energy and Power Engineering 2021” (SUSE-2021)
Article Number 01009
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202128801009
Published online 14 July 2021
  1. A.A. Fominich, Evaluation of the effect of solid grease on the tribo-characteristics of the sliding contact units: Dissertation for the degree of candidate of technical sciences (Moscow, Moscow research University Moscow Power Engineering Institute, 229, 2015) [Google Scholar]
  2. J.I. Azbukin, Improving the efficiency of turbine generators (M., Energoatomizdat, 80, 1983) [Google Scholar]
  3. V.N. Zaboin, I.E. Kvach, J.A. Rodionov, Research of current distribution by parallel connected brushes operating on slip rings of turbo generators with different types of cutting, Leningrad State Technical University, 97, 6, (1990) [Google Scholar]
  4. E.K. Damm, L.J. Zinner, A.I. Skorospeshkin, Research of the influence of mechanical factors on the commutation of collector electric machines, Bulletin of the Tomsk Polytechnic Institute, Tomsk, 190, 355–363 (1968) [Google Scholar]
  5. I.V. Plokhov, I.E. Savraev, Experimental research of the character of the current in the brush-contact apparatus of turbogenerators, Collection of scientific works of the Pskov Polytechnic Institute, St. Petersburg State Technical University, Pskov, PPI SPSTU, 1, 46–49 (1997) [Google Scholar]
  6. I.V. Plokhov, Diagnostics of dynamics of sliding current collection units of collector electric machines, Dissertation for the degree of candidate of technical sciences (Sankt-Petersburg, St. Petersburg State Technical University, 1995) [Google Scholar]
  7. I.V. Plokhov, Stability of contact of brushes in solid brush current collection systems, Collection of scientific works of the Pskov Polytechnic Institute, St. Petersburg State Technical University, Pskov, PPI SPSTU, 3 (1999) [Google Scholar]
  8. M.F. Karasev, Commutation of DC Collector Machines (M.-L.: Gosenergoizdat, 251, 1961) [Google Scholar]
  9. O.I. Kozyreva, Y.N. Guraviev, I.V. Plokhov, I.E. Savraev, A.V. Ilyin, The regions of parametric instability of brush-contact device electromagnetic circuit in unstable working conditions, Environment, Technology, Resources, Proceedings of the International Scientific and Practical Conference, Rezekne, Rezekne higher education institution, 1, 84–88 (2015) [Google Scholar]
  10. A. Ilyin, I. Plokhov, O. Kozyreva, I. Savraev, The simulation model of sliding contact with three degrees of freedom and distributed parameters of the transition layer, Environment, Technology, Resources, Proceedings of the International Scientific and Practical Conference, Rezekne, Rezekne higher education institution, 3, 182–186 (2015) [Google Scholar]
  11. P.E. Dupont, S.P. Yamajako, Stability of frictional contact in constrained rigid body dynamics, IEEE Trans, Robotics and Automation, 13, 230–236 (1997) [Google Scholar]
  12. N. Hoffmann, M. Fischer, R. Allgaier, L. Gaul, A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations, Mech. Res. Comm., 29, 197–205 (2002) [Google Scholar]
  13. Le Xuan Anh, Dynamics of Mechanical Systems with Coulomb Friction (Foundations of Engineering Mechanics) (Springer, New York, 2003) [Google Scholar]
  14. V.I. Nellin, N.J. Bogatyrev, L.V. Lozhkin, Sliding contact mechanics (M., Transport, 255, 1966) [Google Scholar]
  15. P.S. Livshits, Electric Machine Brushes Handbook (M., Energoatomizdat, 216, 1983) [Google Scholar]
  16. L.J. Zinner, A.I. Skorospeshkin, E.K. Damm, Research of the stability of the operation of electric brushes on the collector and on the current-collecting rings, Bulletin of the Tomsk Polytechnic Institute, Tomsk, 190, 247–256 (1968) [Google Scholar]
  17. I. Plokhov, I. Savraev, A. Markov, N. Kotkov, Y. Domracheva, The model of the constriction resistance of a sliding electrical contact, Vide, Tehnologija, Resursi - Environment, Technology, Resources, Latvia, Rezekne, (2019) [Google Scholar]
  18. O. Kozyreva, I. Plokhov, N. Kotkov, L. Gevorkov, A. Kallaste, et al., Reducing sparking in the transient layer of the sliding electrical contact unit, 19th International Scientific Conference on Electric Power Engineering, EPE 2018 - Proceedings, Brno, Czechia, 1–5 (2018) [Google Scholar]
  19. A. Ilyin, I. Plokhov, I. Savraev, O. Kozyreva, N. Kotkov, Forming and overlapping microreliefs in sliding contact simulation model, Vide, Tehnologija, Resursi - Environment, Technology, Resources, Latvia, Rezekne (2017) [Google Scholar]
  20. I.V. Plokhov, I.E. Savraev, V.E. Egorov, Probabilistic methods in assessing the mechanical instability of sliding contact, Deposited «Informelectro», 31-ET91, 15 (13 May 1991). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.