Open Access
Issue
E3S Web Conf.
Volume 288, 2021
International Symposium “Sustainable Energy and Power Engineering 2021” (SUSE-2021)
Article Number 01020
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202128801020
Published online 14 July 2021
  1. S.A. Akhmetov, Deep processing technology of oil and gas: Study guide for universities (Ufa: Gilem, 672, 2002) [Google Scholar]
  2. S.G. Propopuk, P.H. Masgutov, Industrial catalytic cracking units (M.: Chemestry, 3-edt., 310, 2018) [Google Scholar]
  3. Wang Derek, Li Tianchi, Carbon Emission Performance of Independent Oil and Natural Gas Producers in the United States, Sustainability, 10 (1), 1–18 (2018) [Google Scholar]
  4. Z. Adzamic, S. Besic, The impact of the catalytic reforming operation severity on cycle duration and product quality at the Rijeka oil refinery, Fuels and lubricants, 42 (1), 83–87 (2013) [Google Scholar]
  5. D.D. Khatnullina, Catalytic reforming [Electronic resource], Engineering Science: Theory and Practice: Chita: Young scientist, 106–109 (2014) Available at: https://moluch.ru/conf/tech/archive/88/4681/ [Google Scholar]
  6. P.A. Aliyev, A.E. Tserkovniy, G.A. Mamedova, Production management with fuzzy initial information (M.: Energoatomizdat, 307, 1991) [Google Scholar]
  7. S. Gupykova, Method of expert estimates, Theory and practice (M.: Kogito-center, 509, 2017). [Google Scholar]
  8. H.Z. Sabzi, Developing an intelligent expert system for streamflow prediction, integrated in a dynamic decision support system for managing multiple reservoirs: a case study, Expert system with applications, 82, 3, 145–163 (2017) [Google Scholar]
  9. A.R. Ryzhov, Fuzzy set theory and its applications (M.: MGU, 115, 2017) [Google Scholar]
  10. D. Dubois, The role of fuzzy sets indecision sciences: old techniques and new directions, Fuzzy Sets and Systems, 184, 3–17 (2011) [Google Scholar]
  11. B. Orazbayev, D. Kozhakhmetova, R. Wojtowicz, J. Krawczyk, Modeling of a Catalytic Cracking in the Gasolin Production Installation with a Fuzzy Environment, Energies, 13, 4736, 1-13 (2020) DOI: 10.3390/en13184736 [Google Scholar]
  12. Yu.V. Sharikov, P.A. Petrov, Universal model for catalytic reforming, Chem. And Petroleum Engineering, 43 (9), 580–597 (2013) [Google Scholar]
  13. Shanshan Guo, Fan Zhang, Chenglong Zhang, Chunjiang An, Sufen Wang, Ping Guo, A MultiObjective Hierarchical Model for Irrigation Scheduling in the Complex Canal System, Sustainability, 11 (1), 24 (2019) [Google Scholar]
  14. G.M. Ostrovsky, N.N. Ziyatdinov, T.V. Lapteva, A. Silvestrova, Optimization of Chemical Process Design with Chance Constraints by an Iterative Partitioning Approach, Journal of Industrial and Engineering Chemistry, 54 (13), 3412–3437 (2015) [Google Scholar]
  15. D. Ibrahim, M. Jobson, J. Li, G. Guillen-Gosalbez, Optimization-based design of crude oil distillation units using surrogate column models and a support vector machine, Chemical engineering research & design, 134, 212–225 (2018) [Google Scholar]
  16. Y. Chen, L. He, J. Li, S. Zhang, Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty, Computers & chemical engineering, 109, 216–235 (2018) [Google Scholar]
  17. V.G. Matveykin, B.S. Dmitrievsky, A.G. Kokuev, A.M. Dzhambekov, Problem of Control of Catalytic Reforming and Method of its Solutions, Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 330 (6), 59–67 (2019) DOI: 10.18799/24131830/2019/6/2127 [Google Scholar]
  18. Technological regulations for the catalytic reforming unit LG-35-11 / 300-95, Atyrau, 135 (2018) [Google Scholar]
  19. B.B. Petrov, A.B. Moiseev, E.S. Burdakova, Hydrotreating of straight-run fuels on spherical aluminum-nickel-molybdenum catalysts, Oil Refining and Petrochemicals, 2, 16–19 (2016) [Google Scholar]
  20. B.B. Orazbayev, Ye.A. Ospanov, K.N. Orazbayeva, B.A. Serimbetov, Multicriteria optimizationin control of a chemical technological system for production of benzene with fuzzy information, Bull. of the Tomsk Polytechnic Univ. Geo Assets Eng., 330 (7), 182194 (2019) [Google Scholar]
  21. L.T. Biegler, Y.D. Lang, W.J. Lin, Multi-scale Optimization for Process Systems Engineering, Computers and Chemical Engineering, 10, 17–35 (2016) [Google Scholar]
  22. Zhao Zhi-Wen, Wang De-Hui, Statistical inference for generalized random coefficient autoregressive model, Mathematical and Computer Modelling, 56, 152–166 (2012) [Google Scholar]
  23. B.B. Moizec, Y.B. Plotnikova, L.A. Redko, Statistical quality control methods and experimental data processing (M.: Urait, 2-edt., 118, 2019) [Google Scholar]
  24. S.Yu. Pavlov, N.N. Kulov, R.M. Kerimov, Improvement of Chemical Engineering Processes Using Systems Analysis, Theoretical Foundations of Chemical Engineering, 53 (2), 117–133 (2016) [Google Scholar]
  25. A.B. Andreichikov, Systems analysis and synthesis of strategic decisions in innovation: Mathematical, heuristic and intellectual methods of systems analysis and synthesis (M.: Lenand, 306, 2018) [Google Scholar]
  26. B.B. Orazbayev, E.A. Ospanov, K.N. Orazbayeva, L.T. Kurmangazieva, A Hybrid Method for the Development of Mathematical Models of a Chemical Engineering System in Ambiguous Condition, Mathematical Models and Computer Simulations, 10 (6), 748–758 (2018) DOI: 10.1134/S2070048219010125 [Google Scholar]
  27. B.E. Gmurman, Theory of probability and mathematical statistics: Textbook for universities (M.: Higher education, 479, 2017) [Google Scholar]
  28. U.I. Ryzhikov, Simulation modeling, Author’s imitation of systems and networks with queues (SP.: Lan, 112, 2019) [Google Scholar]
  29. B.B. Orazbayev, Ye.A. Ospanov, K.N. Orazbayeva, V.E. Makhatova, M.K. Urazgaliyeva, A.B. Shagayeva, Development of mathematical models of R-1 reactor hydrotreatment unit using available information of various types, Journal of Physics: Conference Series 1399, 044024, 1–6 (2019) DOI: 10.1088/1742-6596/1399/4/044024 [Google Scholar]
  30. B.M. Shumskii, L.A. Zyrianova, Engineering challenges in oil refining and petrochemistry (M.: Chemestry, 256, 2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.