Open Access
E3S Web Conf.
Volume 288, 2021
International Symposium “Sustainable Energy and Power Engineering 2021” (SUSE-2021)
Article Number 01058
Number of page(s) 8
Published online 14 July 2021
  1. Rao Jwala Laxmi Narasimha, Bansal Gaurav, Auddy Soubnik, Tulkiewicz Thomas, Ohrstrom Magnus, Mitigation of ferroresonance in line commutated, HVDC converter interconnected with series compensated overhead line transmission system, India, Sweden (2016) [Google Scholar]
  2. Shabain Heba Abu, Osman Ahmed, El-Hag Ayman, Detection and identification of ferroresonance, United Arab Emirates (2017) [Google Scholar]
  3. Rezaei Salman, Impact of transmission line and plant outage on ferroresonance in AC transmission system and new suppression method, Iran (2017) [Google Scholar]
  4. S. Poornina, C. Pugazhendhi Sugumaran Dr., Identification of ferroresonance phenomena using, Wavelet transforms (India, 2016) [Google Scholar]
  5. H.E. Zhiqiang, L.I. Xin, Q.I.N. Jiayuan, H. Haibo, Study on ferroresonance over-voltage based on harmonic elimination device, China (2018) [Google Scholar]
  6. Wahyudi Mochammad, Negara I. Made Yulistya, Asfani Dimas Anton, Hernanda I. Gusti Ngurah Satriyadi, Hidayat Reno, Comparison of ferroresonance response on three phase transformer with different core material: M5 and ZDKH, Indonesia (2018) [Google Scholar]
  7. Wahyudi Mochammad, Negara I. Made Yulistya, Asfani Dimas Anton, Hernanda I. Gusti Ngurah Satriyadi, Anugrah Kadek Suparta, Study of Peterson coil grounding system inductance variation on ferroresonance in 150 kV transformer, Indonesia (2018) [Google Scholar]
  8. Wahyudi Mochammad, Negara I. Made Yulistya, Asfani Dimas Anton, Hernanda I. Gusti Ngurah Satriyadi, Anugrah Bonifaccius Kevin Yegar Sahaduta, Study of ferroresonance in 150 kV high voltage inductive voltage transformer, Indonesia (2020) [Google Scholar]
  9. Wang Yunfei, Liang Xiaodong, Pordanjani Iraq Rahmi, Jafari Ali, Cui Ryan, Clark Colin, Investigation of ferroresonance causing sustained high voltage at a de-energized 138 kV Bus: A case study, Canada (2019) [Google Scholar]
  10. Solak Krysztof, Rebizant Waldemar, Modeling of ferroresonance phenomena in MV Networks, Poland (2018) [Google Scholar]
  11. A.K. Popov, Investigation of ferroresonance overvoltages in 6-35 kV networks with isolated and resonantly grounded neutral, Saint-Petersburg, 3 (2018) [Google Scholar]
  12. A.V. Makarov, On the efficiency of functioning of antiresonance voltage transformers, Energoexpert, 6 (2013) [Google Scholar]
  13. Wahyudi Mochammad, Negara I. Made Yulistya, Asfani Dimas Anton, Hernanda I. Gusti Ngurah Satriyadi, Fahmi Daniar, Application of Wavelet Cumulative Energy and Artificial Neural Network for Classification of Ferroresonance Signal During Symmetrical and Unsymmetrical Switching of Three-Phases Distribution Transformer, Indonesia (2017) [Google Scholar]
  14. L. Jiaxin, L. Xuchen, W. Yanan, W. Defu, T. Jianeng, Discriminate Method of Power Frequency Ferroresonance in System with Non-Effectively Earthed Neutral of Three-Phase Enclosed GIS, China (2018) [Google Scholar]
  15. S. Boutora, H. Bentarzi, Ferroresonance study using false trip root cause analysis, Algeria (2019) [Google Scholar]
  16. S.K. Chakravathy, C.V. Nayar, Series ferroresonance in power system (1995) [Google Scholar]
  17. Zulkumarnain Abdul-Malek, Kamyar Mehranzamir, Benham Salimi, Hadi Nabipour Afrouzi, Saeed Vahabi Mashak Investigation of ferroresonance mitigation techniques in voltage transformer using ATP-EMTP simulation, Indonesia (2013) [Google Scholar]
  18. Organization Standard Rosseti FGC UES, Guidelines for protection against resonant voltage increases in electrical installations of 6-750 kV (2014) [Google Scholar]
  19. Procedural Guidelines for the Prevention of Ferroresonance in 110-500 kV Switchgear with Electromagnetic Voltage Transformers and Switches Containing Capacitive Voltage Dividers, USSR Minenergo (1987) [Google Scholar]
  20. O.I. Laptev, Research of efficiency of antiresonance voltage transformers of NAMI type in electric networks of high and medium voltage [Google Scholar]
  21. Radmanesh Hamid, Distribution network protection using smart dual functional series resonance-based fault current and ferroresonance overvoltage limiter, Iran (2018) [Google Scholar]
  22. Radmanesh Hamid, Heidary Amir, Smart solidstate ferroresonance limiter for voltage transformer application: principle and test, Iran (2018) [Google Scholar]
  23. Shijin Tian, Tianlong Zhang, Xuezhong Liu, Hongwen Lui, Ruigui Li, Numerical and experimental simulation researches on characteristics of ferroresonance based on distributed power grid parameters, China (2016) [Google Scholar]
  24. I.G.N. Satriyadi, Negara I Made Yulistya, Daniar Fahmi, Dimas Asfani Anton, Satria S. Simamora, Study om damping reactor installation to address ferroresonance on incoming 20 kV GIS, Indonesia (2016) [Google Scholar]
  25. K.E. Kornilov, A.V. Makarov, Ferroresonance phenomena in electrical networks [Google Scholar]
  26. K.P. Kadomskaya, O.I. Laptev, Anti-resonant voltage transformer, The effectiveness of the application, Electrical Engineering News, 6 (42), (2006) [Google Scholar]
  27. Preliminary national standard of the Russian Federation, PNST 319-018, Measuring transformers part 3, Technical specifications for inductive voltage transformers, Moscow (2018) [Google Scholar]
  28. O.I. Laptev, Investigation of the efficiency of antiresonance voltage transformers of the NAMI type in 6-35 kV networks with an isolated neutral, Novosibirsk [Google Scholar]
  29. A.A. Yablokov, Development and research of the primary converterthe voltage of the measuring transformer fordigital substation 110-220, Ivanovo (2016) [Google Scholar]
  30. N.A. Antonov, Analysis of ferroresonance circuits of 110-500 kV electrical networks by mathematical modeling methods, Ivanovo (1998) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.